• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Publication Ethics
    • Peer Review Process
  • Guide for Authors
  • Submit Manuscript
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Bulletin of Faculty of Science, Zagazig University
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 2025 (2025)
Volume Volume 2024 (2024)
Volume Volume 2023 (2023)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 2022 (2022)
Volume Volume 2021 (2021)
Volume Volume 2020 (2020)
Volume Volume 2019 (2019)
Volume Volume 2018 (2018)
Volume Volume 2017 (2017)
Volume Volume 2016 (2016)
Abdelsalam, N., Abu-Donia, H., Atia, H. (2023). Separation for Schrodinger-type operators in weighted Hilbert spaces. Bulletin of Faculty of Science, Zagazig University, 2023(3), 98-107. doi: 10.21608/bfszu.2023.182373.1231
Nehal Ahmed Mohamed Abdelsalam; Hassan M. Abu-Donia; Hany Atia. "Separation for Schrodinger-type operators in weighted Hilbert spaces". Bulletin of Faculty of Science, Zagazig University, 2023, 3, 2023, 98-107. doi: 10.21608/bfszu.2023.182373.1231
Abdelsalam, N., Abu-Donia, H., Atia, H. (2023). 'Separation for Schrodinger-type operators in weighted Hilbert spaces', Bulletin of Faculty of Science, Zagazig University, 2023(3), pp. 98-107. doi: 10.21608/bfszu.2023.182373.1231
Abdelsalam, N., Abu-Donia, H., Atia, H. Separation for Schrodinger-type operators in weighted Hilbert spaces. Bulletin of Faculty of Science, Zagazig University, 2023; 2023(3): 98-107. doi: 10.21608/bfszu.2023.182373.1231

Separation for Schrodinger-type operators in weighted Hilbert spaces

Article 10, Volume 2023, Issue 3, October 2023, Page 98-107  XML PDF (1.05 MB)
Document Type: Original Article
DOI: 10.21608/bfszu.2023.182373.1231
View on SCiNiTO View on SCiNiTO
Authors
Nehal Ahmed Mohamed Abdelsalam email orcid 1; Hassan M. Abu-Donia2; Hany Atia2
1Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
2Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
Abstract
The aim of this paper is to study the separation property of the Schrodinger operator L of the form Lf(x)=-L_0 f(x)+V(x)f(x),x∈R^n, in the weighted Hilbert space H^∼=L_(2,k) (R^n,H), the statement that achieve the separation, and the coercive estimate, with the operator potential V(x)∈L(H) for every x∈R^n, where L(H) is the space of all bounded linear operators on the arbitrary Hilbert space H. The operator L_0=∑_(i,j=1)^n ∂/(∂x_i ) a_ij (x)∂/(∂x_j )+∑_(i=1)^n b_i (x)∂/(∂x_i ) is the differential operator with the real-valued continuous functions a_ij (x) and b_i (x). Furthermore, we study the existence and uniqueness of the solution of the second order differential equation -∑_(i,j=1)^n ∂/(∂x_i ) a_ij (x)∂/(∂x_j ) f(x)-∑_(i=1)^n b_i (x)∂/(∂x_i ) f(x)+V(x)f(x)=W(x), where W(x)∈H^∼, in the weighted Hilbert space H^∼=L_(2,k) (R^n,H), such that k∈C^1 (R^n ) is positive weight function.
Keywords: Separation; Schrodinger-type operator; Operator potential; Hilbert space; Laplace operator; Coercive estimate; Existence and uniqueness.
AMS Subject Classification: 47F05, 58J99.
Keywords
Separation; Schrodinger-type operator; Operator potential; Hilbert space; Existence and uniqueness
Main Subjects
Basic and applied research of Botany
Statistics
Article View: 103
PDF Download: 299
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by NotionWave.