The aim of this paper is to study the separation property of the Schrodinger operator L of the form Lf(x)=-L_0 f(x)+V(x)f(x),x∈R^n, in the weighted Hilbert space H^∼=L_(2,k) (R^n,H), the statement that achieve the separation, and the coercive estimate, with the operator potential V(x)∈L(H) for every x∈R^n, where L(H) is the space of all bounded linear operators on the arbitrary Hilbert space H. The operator L_0=∑_(i,j=1)^n ∂/(∂x_i ) a_ij (x)∂/(∂x_j )+∑_(i=1)^n b_i (x)∂/(∂x_i ) is the differential operator with the real-valued continuous functions a_ij (x) and b_i (x). Furthermore, we study the existence and uniqueness of the solution of the second order differential equation -∑_(i,j=1)^n ∂/(∂x_i ) a_ij (x)∂/(∂x_j ) f(x)-∑_(i=1)^n b_i (x)∂/(∂x_i ) f(x)+V(x)f(x)=W(x), where W(x)∈H^∼, in the weighted Hilbert space H^∼=L_(2,k) (R^n,H), such that k∈C^1 (R^n ) is positive weight function. Keywords: Separation; Schrodinger-type operator; Operator potential; Hilbert space; Laplace operator; Coercive estimate; Existence and uniqueness. AMS Subject Classification: 47F05, 58J99.
Abdelsalam, N., Abu-Donia, H., & Atia, H. (2023). Separation for Schrodinger-type operators in weighted Hilbert spaces. Bulletin of Faculty of Science, Zagazig University, 2023(3), 98-107. doi: 10.21608/bfszu.2023.182373.1231
MLA
Nehal Ahmed Mohamed Abdelsalam; Hassan M. Abu-Donia; Hany Atia. "Separation for Schrodinger-type operators in weighted Hilbert spaces", Bulletin of Faculty of Science, Zagazig University, 2023, 3, 2023, 98-107. doi: 10.21608/bfszu.2023.182373.1231
HARVARD
Abdelsalam, N., Abu-Donia, H., Atia, H. (2023). 'Separation for Schrodinger-type operators in weighted Hilbert spaces', Bulletin of Faculty of Science, Zagazig University, 2023(3), pp. 98-107. doi: 10.21608/bfszu.2023.182373.1231
VANCOUVER
Abdelsalam, N., Abu-Donia, H., Atia, H. Separation for Schrodinger-type operators in weighted Hilbert spaces. Bulletin of Faculty of Science, Zagazig University, 2023; 2023(3): 98-107. doi: 10.21608/bfszu.2023.182373.1231