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ABSTRACT : This purpose of this paper is to determine the stability domain of the powertrain of hybrid 

electric vehicles under different drive mode with multiple excitation sources, such as irregular internal 

excitation (engine and motor), external excitation (road) which can result in shaft failure. The multiple 

scale technique (MSPT) is used to develop and solve the simplified two-mass nonlinear dynamic model of 

second order for the hybrid elective vehicles powertrain (HEVP) in order to produce an approximate 

solution. HEVP is studied on the existence of external force at super harmonic resonance case                     

(
0 2  ). The negative velocity feedback control (NVF) is used to control the amplitude of HEVP 

vibration.  The mathematically derived frequency response equation is used in the numerical solutions 

that obtained using Rung-Kutta procedure. Comprehensive comparison of the amplitudes is served by 

using the time history program before and after the control of NVF. Response curves for frequency 

(angular speed) were studied at specific system coefficients that were both controlled and uncontrolled. 

The influence of various system parameters on the stability behavior are discussed. 
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I. INTRODUCTION  

Over the past few years, vehicle electrification has become an increasingly popular solution to the issues of air 

pollution and the depletion of non-renewable energy sources associated with traditional fuel-powered cars. 

Series hybrid electric vehicle powertrain (SHEVP) is powered by two or more energy sources, such as thermal 

and electric power. SHEVP can be categorized into three basic architectures: parallel, series, and series-parallel, 

depending on how the energy sources are connected to the powertrain. In a series SHEV, the engine connects to 

a permanent magnet synchronous motor (PMSM) but there is no connection between the internal combustion 

engine and the powertrain. in parallel SHEV, the electric motor and internal combustion engine are 

mechanically connected to the powertrain [1,2]. It is important to note that an unbalanced distribution of power 

between these sources can result in significant vibrations in the rotor, which can lead to instability in the entire 

transmission system [3, 4]. The HEV powertrain is a multi- Degree of freedom (DOF) nonlinear system with 

several excitation sources. Tang et al. [5], developed a 16-DOF torsional vibration model for the HEV power 

system. Chen et al. [6], developed the electromechanical coupling-based two-mass torsional vibration model of 

a HEV powertrain. A mathematical model for explaining the vibrations seen in PMSM and a demonstration of 

the parameters space in which a chaotic attractor emerges are introduced by Xue et al. [7]. Chen et al. [8, 9] 

investigated the nonlinear electromagnetic torque in the PMSM using electromagnetic theory to look at how the 

torsion angle affected on the angle between the stator and the magnetic motive force. Rotating machinery can 

experience torsional vibration, which is an undesirable phenomenon because, if left unchecked, it can harm and 

occasionally destroy other machines and structures [10]. The goal of current research is to eliminate or 

significantly lower the vibration risk in mechanical systems Vibration can be reduced with a variety of 

controller types, including passive, semi-active, and active control. Using mathematical methods to analyze and 
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predict possible vibration issues and their resolution is an important part of mechanical vibration analysis. Pei-

Ming et al. [11], illustrated that the most effective tools for passive vibration control is the dynamic absorber, 

which can gather the vibration systems. Authors in [12-15] claimed the passive control organization is a 

common technique to settle down and control key vibration systems. ElSayed et al. [16] investigated the 

nonlinear pendulum system’s vibration and stability while employing passive control to describe a ship’s roll 

motion. El-Bassiouny and Eissa [17] used nonlinear mechanical oscillator that was being simulated by external 

and resonant parametric inputs by applying the multiple time scale approach.   

 The pivot motion of a simple pendulum with a stiff arm fastened to a longitudinal absorber and moving 

on an elliptical route was examined by L. Lautsch and T. Richter [18]. They succeeded in decoupling the rapid 

and sluggish scales by introducing regional averages and substituting localized periodic-in-time issues for rapid 

scale inputs. They were able to develop a posteriori error estimator by using the dual-weighted residual 

technique and segmenting errors into averaging error, slow scale error, and rapid scale error. The authors 

showed how to apply the error estimator for adaptive control of a numerical MSPT and confirmed its 

correctness. M. Kovaleva et al. [19] examined the stationary and nonstationary oscillation behavior of a 

parametric pendulum using the concept of restricted phase trajectories. A simpler model that might be able to 

predict highly modulated patterns outside of the typical range of beginning circumstances was proposed. T. S. 

Amer et al. [20], the authors investigate how a piezoelectric device affects a dynamical system with two degrees 

of freedom. Lagrange's equations are used to create the governing system of equations of motion, and the MSP 

and 4-RK methods are used to produce approximate and numerical solution, respectively. After removing 

secular elements, resonance cases are classified, and the solvability criteria are determined. The energy 

collecting device's outputs are examined and the ME for two scenarios is investigated. T. S. Amer et al. [21], 

look at a 3DOF dynamical system using an electromagnetic harvesting device and a magnet. The system's 

equations of motion are derived from Lagrange's equations and are then analytically solved with the MSP. To 

determine areas of stability and instability, apply the Routh-Hurwitz criterion. A displacement-velocity feedback 

control mechanism is proposed by C. Cheng et al. [22] to enhance the isolating performance of the quasi-

zero stiffness vibration isolations (QZSVI). Time delay is considered in the electronically regulated QZSVI 

system. The way to further enhance the QZSVI for superior overall performance are described by Ch. Liu et al. 

[23]. Moreover, several instances of QZSVI's technical applications are given. The dynamic model is 

constructed using the Lagrange equation, according to H. Pu et al. [24]. New indicators of the QZSVI are then 

created and compared with other isolators, as well as the width of the QZSVI region and the linearity of 

stiffness. An experimental platform is then set up to verify the theoretical outcomes. 

 The vibration characteristics of a motor rotor were examined by Amer et al. [25], along with the impact 

of speed controllers and electro-mechanical couplers with multiple excitation forces. In the worst-case scenario 

of resonance, they discovered that the velocity feedback controller works better for this system when external 

and parametric excitation forces are present. Y. S. Amer and Taher A. Bahnasy [26] provided clarification and 

assess an externally stimulated Duffing oscillator under feedback control under the worst resonance scenario. 

For this system, the many time scales approach is used to obtain an analytical solution with both the existence 

and nonexistence of a time delay on the control loop. To lessen the amplitude peak, a suitable stability study is 

also carried out, and suitable options for the feedback gains and the time delay are discovered. 

 The aim of this research is to reduce vibrations caused by external forces in the main system using 

negative velocity feedback controller. The system time history is analyzed before and after the implementation 

of the controller using the fourth order Runge-Kutta method. The method of multiple scales is used to obtain an 

approximate solution up to the first approximation. The stability of the system is assessed under super harmonic 

resonance case. The system's behavior is simulated numerically with and without the negative velocity 

controller, the impact of selected coefficients is demonstrated through numerical data. A comparison between 

the numerical and analytical solutions was presented. The efficacy of various parameters and the device's 

behavior were illustrated using the MATLAB program. 

 

https://search.worldcat.org/search?q=au=%22Liu%2C%20Chaoran%22
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Figure 1: Diagram schematic and two-mass model of the power train of a series hybrid electric vehicle [27]. 

                                                II.MATERIALS AND METHODS 

    The hybrid electric vehicle’s schematic diagram as shown in Figure 1. Lagrange function [27] of the system is 

expressed in the following way: 

2 2 2

1 1 2 2 1 2

1 1 1
( )

2 2 2
L J J k                                                                                    (1) 

Where 
1
  and

2
 express the angle of the torsional vibration at the shaft’s end. 

1 2
,J J Called the moment of 

inertia, k is the stiffness of the equivalent shaft.   

The expression representing the mechanical rotational equation of HEVP is given below: 

 

1 1 1 2 1 2

2 2 1 2 1 2
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( ) ( )

G

E
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    
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    

                                                                                               (2) 

Where 
0G

T And 
0E

T are the component of engine and which electromagnetic torque which are constant. The 

following represents the torsional vibration angle 
j

  

( ) ( )
, ,1 1 1 2 2 2

o o
                                                                                      (3) 

( ) ( ) ( ) ( )
, ,1 1 2 2

o o o o
      

Where 
( )o

j
  represent torsional angle between the PMSG and the engine, 

i
  are torsional vibration angle at the 

end of the equivalent shaft.  

Below are the corresponding equations that describe the torsional vibration of the powertrain in HEVP when 

subjected to disturbance in electromagnetic torque 
G

T  and load torque 
E

T . 

( ) ( ) ,1 1 1 2 1 2

( ) ( ) ,2 2 1 2 1 2

J C K TG

J C K TE

    

    

     

     

                                                                                                     (4) 

We substitute the following equation into Equations (4): ,5 51 1 2 2 3 3 4 4T k k k k kG          

(2 )T Fsin tM   and considering the new variable  1 2x     .For a series hybrid electric vehicle, we 

drive  mathematical model of the torsional vibration as follow :  

                                                           (5) 2 3 4 5 ( )2x x x x x x x Fsin t            
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Where: 
32 4 5

1 1 13 52 4 1
, , , ,  , , , , ,1

12 2 1 1 1 1 1

1 1
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k rk r k r k r JF
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      


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

 

 We shall examine the case in which this symmetry is not broken in order to determine the potential energy 

function. Specifically, we set   = η = 0. 

Then the mathematical model of the system without any control represented as:   
2 3 5

0 sin(2 )x x x x x F t                                                                                          (6)            

Perturbation technique                                 

Modeling the system mathematically with a velocity feedback controller will be: 
2 3 5

0 ( ) sin(2 ) ( )x x x x x F t k x t                                                              (7)                                        

Where ( ˆ ˆˆ , ,          ).                                                                                                      

Applying the concept of multiple scale perturbation technique MSPT [28] as follows: 
2

1 1 1( : ) ( , ) ( , ) ( )o o ox t x T T x T T O                                           (8) 

Where   is a small dimensionless parameter of the perturbation and 0 1  , 
oT t and 

1T t  

are the fast and slow time scale respectively the derivatives operator can be defined as 
2

2

0 1 0 0 12
, 2 , ( 0,1)j

j

d d
D D D D D D j

dt dt T


 


     

                                    (9)    

Substituting Equation (8), and (9) into (7) and equating the coefficient of same power of   we obtain the 

following differential equations: 
0( )O  :   

 
2 2

0 0 0( ) 0D x                                                                                                                          (10)  

1( )O   :   

2 2 3 5

0 0 1 0 1 0 0 0 0 0 0 0( ) 2 sin(2 )D x D D x D x x x F t k D X                       (11)                                                                               

The general solution of Equation (10) is 

 0 0 0 0
0

i T i T
x Ae Ae

 
                                          (12) 

Substituting Equation (12) into (11), we obtain:  

0 0
22 2 2 3

0 0 1 0 1 0 0( ) ( 2 3 10 )
i T

D x i D A i A A A A A i k A e
              

00 0 0
3 53 4 5 2( 5 ) .

2

i T i T i tiF
A A A e A e e cc

                                                            (13)  

Where cc. refers to the complex conjugate of the existing terms. We will study the system amplitude at 

resonance case i.e.
02    . Now Equation (13) will be:  

0 0
22 2 2 3

0 0 1 0 1 0 0( ) ( 2 3 10 )
i T

D x i D A i A A A A A i k A e
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00 0 0 0 1
3 53 4 5( 5 )

2
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      
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Neglecting all the secular term in equation (14), then we get: 

1
22 3

0 1 0 02 3 10 0
2

i TiF
i D A i A A A A A i k A e                                  (15) 

Converting 1

2

i
A a e


  in polar form where  a , and   are both function of  

1
T ,

1 ( )
2

ie
D A i a a



   , then equation (15) will be in the form: 

1
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0

3 5
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i T
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
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                                                    (16)                                                                                             

Dividing by 
ie 

 and let  
1T     , hence: 
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3 5

0 0
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3 5
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   
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Equating the imaginary and the real part in equation (17) we obtain: 

0
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2 2 2

a ka F
a







                                                                                                                   (18) 
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0 0 0
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8 16 2

a a F
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 
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  
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                                                                                           (19) 

Equilibrium solution  

To obtain the steady state solution, let 0a   and 0a   into equations (18) and (19), squaring the resultant 

formulas and adding to have the frequency response equation as follows: 
2 2

10 8 6 4
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0 0 0 0 0

2 2 2
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2

0

25 15 9 5 3
( ) ( ) ( ) ( )
256 64 64 8 4
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 
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     

                                  (20) 

In order to talk about how these solutions behave when they are stable, linearizing equations (18) and (19) to 

give the following system: 

a a
J

 

   
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   

                                              (21) 

where:  
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 , is the Jacobin matrix                               (22) 
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                                                                                                    (23)                                                                                         

The stability of the steady-state solution based on the eigenvalues of the Jacobin matrix which can be obtained 

by: 

11 12

21 22

0
J J

J J









                                   (24) 

Equation (40) can be written in the form: 
2

1 2 0H H                                       (25) 

where:  

1 11 22

2 11 22 12 21

( ),

.

H J J

H J J J J

  

 
                                    (26) 

For the above system’s solution to be stable, the Routh-Huriwitz criterion must be satisfied such that: 

1 0,H   and 
2 0H  . These conditions are satisfied numerically with the help of MATLAB code. 

I. RESULTS AND DISCUSSION 

Numerical consequence:   

We used the "Ode 45" package in the MATLAB program [29] to quantitatively examine the system`s results. 

Also, we investigate the stability of the system using the multiple scale technique and the effects of various 

parameter on the behavior of the controlled system were demonstrated. We offered the comparison between the 
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approximate solution which obtained by multiple scale method and the numerical. The basic parameters are 

selected as the following:
00.01, 0.5, 0.005, 10 , 5, 150, 10F k           . 

Time history  
  The behavior of the system is studied at super harmonic resonance case before and after using the linear 

velocity feedback control. Figure 2 (a) and (b) display the time history and phase plane of the main system 

before control. Figure 3 (a) and (b) illustrate the time history and phase plane of the main system after control (

10k   ) at super harmonic resonance case.  Figure 4 (a) and (b) show that the Poincaré mapping before and 

after control.  where Figure 5 (a) and (b) shows a comparison of the approximate and the numerical solution that 

obtained by MST and RK-4 respectively .From these figures, it displays that the time history of the system 

without control has amplitude 7.532, and 1.363 when the system was given an negative velocity feedback 

controller, so effectiveness of the control (
aE = amplitude of uncontrolled system -amplitude of controlled 

system/ amplitude of uncontrolled system) about 82%. These figures also showed how numerical solution and 

approximate solution using multiple scale method agreed. 

 

Figure 2: The main system amplitude (a) without control at resonance case 10 , 50    and (b) phase plane 

 

 

Figure 3: The main system amplitude (a) with control 10k   at resonance case
0

10 , 5    and (b) phase 

plane. 
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 Figure 4: The Poincaré mapping at resonance case
0

10 , 5   , (a) without control and (b) with control. 

 

 

Figure 5: Comparison of time history of the system between the numerical solution and the approximate 

solution with (a) k=0 and (b) k=10. 
 

Frequency response 
      In this section, we explain the frequency response curve and the effects of some parameters, from the 

Figure 6 (a), we can observe that the amplitude are shifted to the left with the increase of    , and Figure 6 (b) 

The amplitude of the controlled system are reduced by increasing the value of natural frequency . One can 

observe that the amplitude is inversely proportional to damping coefficient    ,and directly proportional to the 

excitation force f as shown on Figure 7 (a) and (b) respectively. From Figure 8, we can observe that the 

amplitude is inversely proportional to the nonlinear term coefficient and the controller gain factor k . Figure 9. 

Represent the frequency response of the system with negative velocity feedback control.  

 

         Figure 6: (a) The effectiveness of   at different values and (b) the effective of natural frequency . 
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Figure 7:(a) The effectiveness of damping parameter   at different values, and (b) the effectiveness of external 

force f  at different values. 
  

 

Figure 8: (a) The effectiveness of the   parameter at different value and (b) the effectiveness of control k  at 

different parameter 

 

 

Figure 9:  The response curve of the main system with Negative velocity feedback controller 
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                   Figure 10: The effects of the parameters of the main system on the amplitude at 0k   . 

 

     The effect of various parameter on the main system without control is shown in Figure10. We can note 

that the amplitude of the system is monotonic decreasing when the damping coefficient  , nonlinearities 

coefficient  , and   are increasing, but while the increase of the external force, the amplitude of the main 

system is increasing, so that the system must be controlled. In addition, the amplitude of the main system is 

monotonically declining with a rise of the controller gain coefficient k .        

 

Conclusion 
     The vibration system of the hybrid electric vehicle is controlled in this paper by using the active control, 

which applied to reduce the vibration through negative velocity feedback (NVF).the equation of the motion of 

this system contains quadratic and cubic nonlinearities .The multiple scale technique (MST) is utilized to 

determine an approximate solution for the ordinary differential equation represented this system at worse case 
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(super harmonic resonance case( 2 o  ).the stability of the obtained numerical solution is investigated 

using response curve equation .the effect of different parameter on the vibrating system are investigated .from 

the above study ,we can list the following results: 

(1) The super harmonic resonance case ( 2 o  ) is the worst resonance case of the vibration system. 

(2) After using negative velocity feed-back the amplitude of the vibration system was reduced by about 

82% from without control. 

(3) The effectiveness of negative velocity feedback 
aE  is about 6. 

(4) The behavior of the controlled system increased with increasing the negative velocity coefficient k. 

(5) With an increase in the damping coefficient, the controlled system’s behavior decreased.  

 

 

List of abbreviations and symbols  
MSPT                                           Multiple time scale perturbation technique 

FR                                                 Frequency response 

HEVP                                           Hybrid elective vehicles powertrain  

RK-4                                            The fourth-order Runge-Kutta procedure  

0                                               Natural frequency of the system  

                                                 Damping coefficients  

                                       Nonlinear terms coefficients  

k                                                 Controller feedback gain 

                                                  Small perturbation parameter 

cc                                                  Complex conjugate  

PR                                                 Primary resonance   

SR                                                 Simultaneous resonance  

SHEVP                                         Series hybrid electric vehicle powertrain  

PMSM                                          Permanent magnet synchronous motor 

DOF                                             Degree of freedom  

QZSVI                                          Quasi-zero stiffness vibration isolations  
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