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ABSTRACT : Aircraft wings, especially during flight, experience vibrations due to various forces. This 

research focuses on controlling these vibrations using a negative velocity feedback controller. The wing is 

represented as a stepped cantilever plate, acknowledging its complex shape and movement. The study 

considers several factors influencing wing vibrations: Axial movement: The wing's movement through the 

air. Smooth surfaces: Aerodynamic forces acting on the wing. Piezoelectric innervation: The use of 

piezoelectric materials, which can generate electrical charge in response to mechanical stress and vice-

versa, for vibration control. Out-of-plane excitation: Forces acting perpendicular to the wing surface. The 

research uses a combination of theoretical and computational methods: Perturbation methods: 

Mathematical techniques to approximate solutions to complex nonlinear systems. MATLAB simulations: 

Computer simulations to model and analyze the wing's dynamic behavior. Routh-Hurwitz criterion: A 

mathematical test to determine the stability of a system. The study investigates "primary and 1:1 internal 

resonance condition," which refer to specific vibration modes of the wing. The goal is to determine how 

effectively the negative velocity feedback controller can suppress these vibrations and maintain stability. 

Finally, the research validates the accuracy of the methods used by comparing analytical results with 

numerical simulations. 

KEYWORDS: outer plate; multiple time scale method; NVC; nonlinear vibration control; resonance case; 

stability; frequency Response. 
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Introduction 

Axially moving wings, capable of changing their aspect ratio, present a promising alternative to traditional 

fixed wings in aviation. Their adaptability allows for optimization across various flight conditions, leading to 

improvements in low-speed performance, landing, and cruising efficiency [1–3]. This is achieved by adjusting 

the wing's configuration to best suit each phase of flight. When fully extended, the wing offers the stability and 

lift-to-drag ratio of a fixed wing, proving advantageous for takeoff, landing, and cruising. Researchers are 

actively studying the complex dynamics of these wings, often using simplified beam, plate, and shell models to 

analyze their deployment and retraction behavior [4-7]. These investigations, employing theoretical, numerical, 

and experimental approaches, focus on understanding and addressing potential challenges related to stability 

and control, ultimately aiming to enhance the performance of these advanced wing systems. The phenomenon 

of 1:1 internal resonance, often linked to saturation in dynamical systems, can be exploited for active vibration 

control. A saturation controller, capitalizing on this resonance, effectively suppresses steady-state vibrations by 

using a quadratic position coupling term and the system's inherent saturation characteristics [8-9]. Proportional-

Derivative controllers combine proportional and derivative actions. The proportional action responds directly 

to the current error (the difference between the desired and actual values), while the derivative action responds 

to the rate of change of the error, enabling anticipatory corrections. PD controllers are highly effective in 

reducing vibrations across various applications, from flexible beams to collocated structures, improving system 
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stability and performance. Active vibration control systems commonly utilize force actuators powered by 

external energy sources. These actuators, often placed on flexible components like mounts or supports, enhance 

vibration absorption. A typical setup involves sensors to detect vibrations, electronic circuits to process 

feedback and determine the necessary actuation force, and actuators to apply a counteracting force to the main 

structure. This combined approach effectively broadens the frequency range of vibration absorption [10-13]. 

Using the specified controller resulted in a substantial 94% reduction in vibrations compared to the 

uncontrolled system. Efficiency, measured as Ea., significantly improved from 16 for a standard PPF controller 

to 193 with the time-delayed version. Researchers have investigated various control strategies, including those 

applied to Hybrid Rayleigh-Van der Pol Duffing oscillators, cantilever beams, vertical conveyors, and systems 

using magneto strictive actuators, to mitigate vibrations in diverse nonlinear dynamical systems [11-22]. These 

strategies encompass linear velocity and acceleration feedback control, cubic velocity feedback control, 

nonlinear saturation control, and positive position feedback control. Studies employing the method of multiple 

scales have analyzed fundamental, subharmonic, and ultra-harmonic resonances, examining equations of 

motion and steady-state solutions [22-34]. The nonlinear behavior of a forced and self-excited beam with a 

positive position feedback controller, subjected to harmonic excitation at its support, has also been explored. 

This study focuses on suppressing vibrations in an outer plate experiencing simultaneous resonance excitations 

using an NVC controller. The research examines the controller's effectiveness in reducing or eliminating 

steady-state vibrations and resonances within the plate. Approximate solutions, derived through perturbation 

methods, offer insights into parameter motion, stability conditions, and jump phenomena, visually represented 

through graphical analysis. These analytical findings are consistent with numerical results. The uncontrolled 

system exhibits steady-state vibrations under harmonic excitation, highlighting the need for an effective control 

mechanism to mitigate these potentially damaging oscillations. The comparative analysis reveals that the NVC-

control approach demonstrates superior performance in eliminating vibrations within the system. 

Nomenclature  

, ,x x x  Movement, speed, and acceleration of the primary 

mood of the system, consistently.   

, ,y y y  Movement, speed and acceleration of 

second mood 

of system respectively.   

1 1,b  System damping coefficients of main system 

respectively.   

1 2,   The constancy of nature of main system 

respectively.   

f  The extent and frequency of an external excitation 

force or external forces applied to a scheme.   

7 8 7 8, , ,b b   Nonlinear coefficients of the main system. 

2 4,   The quantity of NVC control signal  

  Minor perturbation constraint   
 

List of Abbreviation  

MTST multiple time scale technique 

NVC Negative velocity Feedback controller 

SM simultaneous resonance  

FREs frequency-response equations 

IR Internal resonance 
 

1. Closed loop model  

1.1. Classification Dynamics without control. 

   This section introduces the mathematical model of the outer plate system. The system is simplified and 
modeled as a two-degree-of-freedom system, as depicted in Figure 1. 

2 2 2 2 2 3 3

1 1 5 6 7 8 1 1cosx x x x y xy x y f t                                                                     (1) 
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2 2 2 2 2 3 3 2

2 1 5 6 7 8 2 2cosy y b y b y x b x y b y b x f t                                                               (2)            

1.2. Structure Dynamics with NVC control. 

Simplified models, such as the aircraft structure section shown in Figure 1, are commonly used in engineering to 

analyze the behavior of outer plate systems. A negative velocity feedback controller can mitigate vibrations 

induced by external forces. The system's behavior under these conditions, including the effects of the external 

force and the negative velocity feedback controller, is described by Equations (3-4). 

2 2 2 2 2 3 3

1 1 5 6 7 8 1 1 2cosx x x x y xy x y f t x                                                         (3) 

2 2 2 2 2 3 3 2

2 1 5 6 7 8 2 2 4cosy y b y b y x b x y b y b x f t y                                                   (4) 

 

 

 

 

 

 

 

 

 

Fig.1: Block chart of outer plate with NVC -controller. 

2. Analytical Investigations  

2.1. Perturbation study 

This section employs the method of multiple scales to determine an approximate solution for the nonlinear 

dynamical system under the proposed NVC controller, leading to a first-order approximation [35-37]. 

0 1

2

0 0 1 1 0 1

2

0 0 1 1 0 1

...

( ; ) ( , ) ( , ) O( )

( ; ) ( , ) ( , ) O( )

t T T

x t x T T x T T

y t y T T y T T

  

  

   


   


   

                                                                                           (5) 

where, the fast scale is 0T  and the slow scale is 1T t . The derivatives using the multiple scales method take 

the forms: 

sensor 

 

Actuator  

NVC controller  
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2

0 1 2

2
2

0 0 12

...

(j 0,1)

2 ...

j

j

d
D D D

dt
D

Td
D D D

dt

 




     

 
  



                                                                                   (6) 

Inserting equations (5) and (6) in equations (3) & (4) such that: 

   
 

3 3

0 1 0 1 0 0 7 0 8 02 2 2 2

0 1 0 0 1 1

2 0 0

2 2( )
cos

D D x D x x y
D x D x O

D x f t

  
    



    
         

                        (7) 

     2 2 2 2 3 3

0 2 0 0 2 1 0 1 0 1 0 0 7 0 8 0 4 0 0

22 ( )D y D y D D y b D y b y b x D y O                  (8)                                           

Equating the coefficients of the same power of  : 

0( )O   

2 2

0 1 0( ) 0D x                                                                                                                                               (9) 

 2 2

0 2 0 0D y                                                                                                                                           (10) 

( )O   

   2 2 3 3

0 1 1 0 1 0 1 0 0 7 0 8 0 2 0 02 cosD x D D x D x x y D x f t                                                        (11)                                                                                                              

 2 2 3 3

0 2 1 0 1 0 1 0 0 7 0 8 0 4 0 02D y D D y b D y b y b x D y                                                                      (12)                                                

From eq. (9) & (10) Solving the homogenous differential equations we get: 

1 0 1 0

0 0 1 1 1(T ,T ) (T ) (T )
i T i T

x A e A e
 

                                                                                                       (13) 

2 0 2 0

0 0 1 1 1(T ,T ) (T ) (T )
i T i T

y B e B e
 

                                                                                                       (14) 

Differential equation (13) & (14) with respect to t and submit in equation (11) & (12):  

   

 

1 0

2 0 1 0 2 0

2 2 2

0 1 1 1 1 1 7 2 1

3 32 3 3

8 7 8

2 3

cos 3

i T

i T i T i T

D x i DA i A A A i A e

f t B Be A e B e CC



  

      

  

      

    
                                    (15) 

    2 0

1 0 2 0 1 0

2 2 2

0 2 1 2 1 2 7 4 2

3 32 3 3

8 7 8

2 3

3

i T

i T i T i T

D y i DB b i B b B B i B e

b A Ae B e A e CC



  

    

 

     

   
                                                          (16)                    

The complex conjugate parts collected in the term CC. After eliminating the secular terms take the followings 

forms: 

   1 0 2 02 2

1 1 1 7 2 1 82 3 cos 3 0
i T i T

i DA i A A A i A e f t B Be
                                             (17) 

  2 0 1 02 2

2 1 2 7 4 2 82 3 3 0
i T i T

i DB b i B b B B i B e b A Ae
                                                                (18) 

 From the first approximation, we concluded the following resonance cases: - 

i) primary resonance: 1   

ii) Internal resonance 2 1   

 

2.2.  Episodic resolutions 

In this section, the selected manner situation: 1 2 1,     & 1 2   used to deliberate the solubility 

settings, we will introduce detuning parameters 1 2( ) &( )   so that: 
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1 1

2 1 2

 

  

   


  
                                                                                                                                             (19) 

Including equation (19) into the secular and small division terms in equation (17) & (18) for compiling the 

solvability conditions as: 

  1 1 2 12 2

1 1 1 7 2 1 82 3 3 0
2

i T i Tf
i DA i A A A i A e B Be

                                                            (20)  

  2 12 2

2 1 2 7 4 2 82 3 3 0
i T

i DB b i B b B B i B b A Ae
    

                                                                    (21)  

To analyze the solution of (20) and (21) exchanging A and B by the polar form as

 1 1 1 1T T

1 1 1 1 1 1

1 1
(T) a (T)e , , (T) a (T ) (T ) e

2 2

i i
A DA ia

               (22)                                                                               

 2 1 2 1(T ) (T )

2 2 1 2 2 1

1 1
(T) a (T)e , , (T) a (T ) (T ) e

2 2

i i
B DB ia

                              (23)                                                             

where 1a  and 2a  This refers to the phases and amplitudes of both the system and the controller when they've 

reached a stable, unchanging state. In other words, it describes the long-term behavior of their oscillations after 

any transient effects have died out., and 1 2&   are the phases of the signal. Inserting (22) and (23) into (20) 

and (21) we get the following amplitude – phase modulating equations:   

38
1 1 1 2 1 1 2 2

1 1

31 1
a a sin sin

2 2 2 8

f
a a


   

 
                                                                                       (24)                                                              

3 38
1 1 7 1 1 2 2

1 1 1

33
a cos cos

8 2 8

f
a a


   

  
                                                                             (25) 

38
2 1 2 4 2 1 2

2

31 1
a a sin

2 2 8

b
a b a 


                                                                                                            (26)

3 38
2 2 7 2 1 2

2 2

33
a cos

8 8

b
a b a 

 
                                                                                                                   (27) 

Where, 1 1 1 1T    . & 2 2 1 2 1T      Back to the main system restrictions, we have the following 

equations: 

38
1 1 1 2 1 1 2 2

1 1

31 1
a a sin sin

2 2 2 8

f
a a


   

 
                                                                                       (28) 

3 38
1 1 1 1 7 1 1 2 2

1 1 1

33
a a a cos cos

8 2 8

f
a


    

  
                                                                                    (29) 

38
2 1 2 4 2 1 2

2

31 1
a a sin

2 2 8

b
a b a 


                                                                                                            (30) 
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3 38
2 2 2 1 2 2 1 7 2 1 2

2 2

33
( ) a cos

8 8

b
a a a b a    

 
                                                                              (31) 

2.3.  Static opinion answer 

Equations (28) through (31) may have an immovable point for a steady-state solution that can be found by 

putting 
1 2 1 2 0a a       

38
1 1 1 2 1 2 2

1 1

31 1
sin a a sin

2 2 2 8

f
a


   

 
                                                                                                (32) 

3 38
1 7 1 1 1 2 2

1 1 1

33
cos a a cos

2 8 8

f
a


   

  
                                                                                              (33) 

38
1 2 1 2 4 2

2

3 1 1
sin a a

8 2 2

b
a b 


                                                                                                                      (34) 

3 38
1 2 1 2 2 7 2

2 2

3 3
cos ( ) a

8 8

b
a a b  

 
                                                                                                     (35) 

Equations (34) and (35) can be squared and then both edges added to become the resulting equation: 

2 22

3 38
1 2 4 2 1 2 2 7 2 1

2 2

31 1 3
a a ( ) a

2 2 8 8

b
b a b a  

 

    
        

     
                                                        (36) 

Equations (32) and (33) can be squared and then both edges added to become the resulting equation: 

2

38 2
1 1 2 1 2 1 2 4 23

1 8 1

2 2

3 3 38 2
7 1 1 1 2 1 2 2 7 23

1 1 8 1 2 1

3 81 1 1 1
a a ( ( a a ))

2 2 8 3 2 2

3 83 3
a a ( (( ) a ))

8 8 3 8 2

a b
b a

f
a a b

b a

 
  



 
   

   

 
    

 

   
       

  

                                   (37) 

Equations and, which describe the system's frequency response, are used to analyze the behavior of the steady-

state solutions under typical operating conditions. ( 1 20, 0a a  ). 

2.4. Stability examination through linearizing the overhead structure 

To determine the stability of the equilibrium solution, the eigenvalues of the Jacobian matrix associated with 

equations through were analyzed. Asymptotic stability is confirmed if all eigenvalues have negative real parts. 

Conversely, if any eigenvalue has a positive real part, the equilibrium is unstable. The stability analysis involves 

examining the behavior of small perturbations around the steady-state solutions 10 20 10, ,a a  and 20 . Thus, we 

assume that: 

1 11 10 2 21 20 1 11 10 2 21 20

1 11 2 21 1 11 2 21

, , , ,

,  ,  ,  .

a a a a a a

a a a a

     

   

        


    
                                                                (38) 



Bulletin  of Faculty of Science ,Zagazig University (BFSZU) 2025 
 

 
h t t p s : / / b f s z u . j o u r n a l s . e k b . e g / j o u r n a l  Page 33 

where 10 20 10, ,a a  and 20 satisfy (28) and (31) and 11 21 11, ,a a  and 21  are perturbations which are assumed 

to be small compared to 10 20 10, ,a a  and 20 . Substituting (37) into (28)– (31), expanding for small 

11 21 11, ,a a  and 21 , and keeping linear terms in 11 21 11, ,a a  and 21 , we get 

11 11 11 12 11 13 21 14 21a r a r r a r                                                                                                                    (39) 

11 21 11 22 11 23 21 24 21r a r r a r                                                                                                                    (40) 

21 31 11 32 11 33 21 34 21a r a r r a r                                                                                                                   (41) 

21 41 11 42 11 43 21 44 21r a r r a r                                                                                                                    (42) 

where , 1, 2,3,4ijr i  and  1, 2,3, 4j  are provided in the Appendix. 

Equations (39) to (42) can be presented in the resulting matrix: 

  11 11 21 21 11 11 21 21        
T T

a a J a a                                                                                                   (43) 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

r  r  r  r

r  r  r  r

r  r  r  r

r  r  r  r

J

 
 
 
 
 
 

                                                                                                                                    (44) 

 J
 
is the Jacobian  matrix. 

Thus, the stability of the steady-state solutions depends on the eigenvalues of the Jacobian matrix. One can 

obtain the following eigenvalue equation: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

                           

                           
0

                           

                              

r r r r

r r r r

r r r r

r r r r


















                                                                                                            (45) 

wherever the following polynomial's roots are located: 

4 3 2

1 2 3 4 0                                                                                                                                   (46) 

The quantities of equation (45)  ; 1,...,4i i   are pigeon-holed in the appendix. The Routh-Hurwitz criterion 

must be met for the solution to the abovementioned system to be stable, meaning that: 

2

1 1 2 3 3 1 2 3 1 4 40, 0, ( ) 0, 0                                                                                                  (47) 
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3. Results and discussions 

3.1. Time history performance without and with NVC controller 

 This study examines the stability of a forced, self-excited nonlinear beam system demonstrating the outer plate 

phenomenon. The system's behavior is analyzed numerically using the fourth-order Runge-Kutta method 

(implemented via MATLAB's ode45 function). Graphical representations of steady-state amplitudes versus 

detuning parameters illustrate the results 1 2,  , using defined system parameter values 

 1 7 8 1 7 8 2 4 1 20.1; 0.4; 0.5; 0.1; 0.7; 0.8; 0.07; 1; 1; 1.b b b f                

 

Figures 2 and 3 illustrate the steady-state amplitudes and Poincare maps of the system before and after 

implementing NVC controllers at the worst resonance case (approximately 0.4 and 0.4, respectively). The 

addition of NVC controllers significantly reduces the system amplitudes to 0.04 and 0.00013, respectively. 

This demonstrates the effectiveness of the NVC controllers. Ea. =10, Ea. =308, and vibrations are reduced by 

approximately 97.8% from their value without control 

 

Figure 2. The amplitude of the focal system before and after adding the NVC controller. 

 

Figure 3. Poincare amplitude of outer plate system before and after adding the NVC controller. 
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3.2. Frequency Response curve (FRC) 

The rejoinder's amplitude depends on both detuning parameters 1 2,   and excitation amplitude f . Solutions 

for system and NVC controller amplitudes are determined by solving equations numerically and graphically. 

The graphical solution, visualized against the detuning parameter 1 2,  , illustrates how system amplitudes 

change with detuning 1 2,  . Figures 4-14 show that frequency response curve amplitudes can be 

asymmetrical, but symmetry can be improved by parameter adjustment. Figure 4, depicting frequency response 

curves for the system with the NVC controller (stable solutions marked by solid lines), allows visual comparison 

of system responses across frequencies and highlights stability regions, showcasing the minimum primary 

system amplitude. Although the NVC controller mitigates vibrations under simultaneous resonance, controlled 

system amplitudes still rise with increasing harmonic excitation f . force. The resulting jump phenomenon 

leads to the main system's minimum achievable amplitude at 1 0   , as shown in Figure 5. Figures 6 and 7 

illustrate the impact of an NVC controller on system behavior under various conditions. Specifically, Figure 5 

highlights the controller's ability to suppress vibrations even in the presence of simultaneous resonance, with the 

smallest primary system amplitude observed at 1 0  . Furthermore, the data indicates that increasing the 

control gain 2 4,  leads to a further increased in system amplitude. This trend is evident in Figs 6 and 7, 

where a monotonic increase in amplitude is observed with increasing gain. Overall, the results presented in Figs 

6-7 provide strong evidence for the efficiency of the NVC controller in mitigating system vibrations across a 

range of frequencies and operating conditions. Figs 8 and 9 illustrate the stimulus of the damping 1 1,b  on the 

system's vibration retort. The figures demonstrate that increasing the damping coefficient effectively reduces 

both the focal system's amplitude and the corresponding controller amplitude, particularly around the frequency. 

This suggests that the damping coefficient plays a significant role in the controller's ability to suppress 

vibrations. The data suggests that increasing the value of this nonlinear parameter corresponds to a decrease in 

overall amplitudes. This implies that the nonlinear parameter plays a role in mitigating system response, with 

higher values leading to greater suppression. Figs 10 and 11 demonstrate how changing the nonlinear parameter 

7 8,b b affects system amplitudes. The data shows that as the value of this nonlinear parameter increases, there's 

a corresponding increase in the overall amplitudes of the system. Fig 12 illustrates how the NVC controller 

behaves at low natural frequencies 2 0   i.e. ( 1 2  ). The figure demonstrates that at these low 

frequencies, both the main system with NVC controller experiences an increase in peak amplitudes. However, 

despite this increase, the figure suggests that the NVC controller remains effective in this regime, indicating its 

suitability for systems with low natural frequencies. Fig. 13 further explores the controller's performance by 

examining three different values of the parameter you've indicated. The figure reveals that the focal structure's 

amplitude reaches its tiniest rate at what time this parameter is set to 1 2  .This finding highlights the 

NVC controller's enhanced efficiency in mitigating vibrations, particularly at resonance, where precise 

parameter tuning leads to optimal performance. 

 

Figure 4. Resonance curves for system with NVC controller, respectively. 
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Figure 5. Frequency retort curve illustrating system amplitude variation across changed values of external force 

f on system with NVC controller. 

 

Figure 6. Frequency retort curve illustrating system amplitude variation across changed values of control signal 

gain 
2  on system with NVC controller. 

 

Figure 7. Frequency retort curve illustrating system amplitude variation across changed values of control signal 

gain 
4  on system with NVC controller. 

 

Figure 8. Frequency retort curve illustrating system amplitude variation across changed values of the damping 

coefficient 
1  on system with NVC controller. 
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Figure 9. Frequency retort curve illustrating system amplitude variation across changed values of the damping 

coefficient 
1b  on system with NVC controller. 

 
Figure 10. Frequency retort curve illustrating system amplitude variation across changed values of nonlinear 

parameter 7b  on system with NVC controller. 

 
Figure 11. Frequency retort curve exemplifying system amplitude variation across changed values of nonlinear 

parameter 8b  on system with NVC controller. 

 
Figure 12. Result of changeable 

2 on system with NVC controller. 
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Figure 13. Outcome of changing 

1 2   on system with NVC controller. 

4. Assessment 

4.1.  Comparison between perturbation solution and numerical simulation.   

Figures 14 and 15 demonstrate a strong correlation between numerical and approximate results for both 

uncontrolled and controlled systems (using a NVC controller). This close agreement validates the precision of 

both methods in representing the system's behavior across various control strategies, highlighting their 

robustness in analyzing system dynamics.

 
Figure 14. Vibration amplitude of uncontrolled main system. 

 

 

Figure 15. Contrast among the numerical solution) (ـــــــــ and approximate solution (………) 
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4.2. Assessment with previous work  

Reference [7] Building upon the nonlinear vibration model of an axially moving wing aircraft presented in, 

which represents the aircraft wing as a stepped cantilever plate and considers aerodynamic forces, piezoelectric 

excitation, and in-plane excitation, this work introduces a PD controller. The model from is based on Reddy's 

higher-order shear deformation theory and Hamilton's principle, simplified using Galerkin's method. This paper 

Analysis of the system's time history and relevant parameters demonstrates the effectiveness of the 

implemented NVC controller in mitigating vibrations. Results show a substantial vibration amplitude reduction 

of approximately 97% with a control effort of nearly 10. A close correlation between numerical and 

approximate solutions validates the accuracy of the approach. 

5. Conclusions  

This study examines the vibration control of an "outer plate" in contact with another object, a scenario that 
generates complex nonlinear vibrations. The goal is to mitigate these vibrations, specifically lateral vibrations 
perpendicular to the plate's surface, using a negative velocity feedback controller. This controller generates a 
control signal based on the current error and its rate of change to actuate the system and dampen vibrations. 
The system's dynamics, including the controller's effect, are represented by coupled differential equations that 
capture the nonlinear plate behavior and the controller's interaction. Approximate solutions are obtained using 
a mathematical technique, and computer simulations solve these equations to model the system's behavior. 
Frequency response analysis is employed to understand the system dynamics and controller effectiveness. A 
sensitivity analysis explores the impact of parameter variations on performance to optimize the controller. 
Stability is assessed to prevent uncontrolled oscillations. Numerical simulations validate the analytical findings 
and demonstrate the control strategy's effectiveness, as shown by improved symmetry in frequency response 
amplitudes after parameter tuning. In summary, the key findings of this study are as follows: 

 The NVC controller demonstrates high efficacy in regulating the system, achieving an effectiveness of 
approximately 10. 

 The effervescent system's amplitude diminished by roughly 97% afterward implementing the NVC 
controller, related to its uncontrolled amplitude. 

 The PR and IR case 1    & 2 1    is one of the worst vibrating resonance cases. 

 Steady-state amplitude increased with excitation force f . 

 Amplitude was contrariwise relative to both the damping factor 1 1,b  and the normal frequency 1 2,   . 

 Increasing the gain of the NVC controller 2 4,  counterintuitively reduced it, a valuable finding for NVC 

controller implementation. 

 Figures 16-17 demonstrate strong agreement between analytical and numerical solutions. 

 NVC controller effectively mitigates high-amplitude vibrations within nonlinear systems. 

 The minimum amplitudes of vibration in a suspended cable occur when 1 2  .   

 Frequency response curves derived using (FRC) solutions closely match those calculated using the 4th 

order Runge-Kutta method. 

 The closed-loop response of the relative displacement, controlled by a NVC controller, exhibits a peak 

overshoot. 

 A modified NVC controller effectively controlled the suspension system's relative displacement, 

minimizing peak overshoot and settling time. 
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Appendix  
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