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ABSTRACT : The main objective of this paper is a fine analytical and numerical study to consider the effects 

of time-delayed velocity feedback on a passive control a linear mass spring damper system subject to 

harmonic external force. The first-order approximate solution is applying the Multiple Scales 

Perturbation Technique (MSPT) to analyze the nonlinear behavior of this model. Studying the stability of 

the obtained numerical solution is investigated by using the phase plane methods and the frequency 

response equation in conjunction with the resonance cases ( 1 1 2, 2     ). We find that adding the 

absorber minimizes the amplitude of vibration in the steady state, so we can control the effective stiffness 

associated with the passive absorber. The problem has been solved by using the Runge-kutta method. 

Effects of different parameters on the system behavior are studied numerically by using the MATLAB 

program. Finally, a comparison of previously published work is done at the end of this work. 

 

   KEYWORDS: Time-delay, Stability, Frequency response, Multiple Times Scale, Vibration Control, External 

Force, Passive Control. 
 

----------------------------------------------------------------------------------------------------------------------------- ------------- 

Date of Submission:  03-08-2024                                                                           Date of acceptance: 01-09-2024 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

I. INTRODUCTION  

The vibration is the worst phenomenon that can be exposed to the structures or machines. An increasing rate of 

vibration causes the destruction and collapse of structures and damage machines, so we use different types of 

absorbers to control and reduce the damage caused by. One of the absorbers used to reduce the risk of vibration 

is time delay, where time delays are determined in any active or passive control system as a result of setting the 

system state. The existence of time delay imposes strict limitations on the control system. With delays in 

measurement, the absorber receives data via process behavior. Time delay is able to effect the stability of the 

system. The time delay on the control system may be a subject of researchers’s interest. 

 

Abdelhafez and Nassar. [1] Studied loop delays and they took into consideration at ion when a positive position 

feedback controller is used to control the vibrations of a forced and self-excited nonlinear beam. External 

excitation is a harmonic excitation caused by the support motion of the cantilever beam. Self-excitation is 

caused by fluid flow and modeled by a nonlinear damping with a negative linear part (Rayleigh’s function). Yan 

et al. [2] verified the possibility of a vehicle suspension system under time delayed the optimal control. Showed 

how to effect of time delay on control stability of the action on the system. They used the mathematical 

simulation to verify the rightness of the stable interval obtained by differential equation theory for linear 

systems with constant coefficients and time delay. 

 

Di Ferdinando and Pepe. [3] Their study involved examining the time delay of nonlinear systems and providing 

suitable conditions to enable the simulation of continuous-time dynamic output feedback controllers. The focus 

of the discussion was on stabilization issues in the sample-and-hold sense. As a specific case, they dealt with 

nonlinear systems with time delay. 
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Xu et al. [4] developed nonlinear saturation controller by using quadratic velocity coupling term with time delay 

instead of the original quadratic position coupling term in the controller. And they used controller development 

to control the high-amplitude vibration of a flexible, geometrically nonlinear beam-like structure when the 

primary resonance and the 1:2 internal resonances occur simultaneously. Coppola and Liu, [5] checked the 

characteristics of a unique isolation for   active vibration controlled by a time‐delayed position feedback 

technique. Where they found the system possesses a ratable time delay caused by the actuator dynamics. The 

study revealed several main differences between negative and positive position feedback. Then, they analyzed 

the stability of the delayed position feedback and studied two feedbacks, namely the delayed negative and 

delayed positive position feedbacks. 

Sayed et al [6] found analytical and numerical study to investigate the vibration and stability of the Van 

der Pol equation subjected to external and parametric excitation forces via feedback control. The stability of the 

system is investigated applying Lyapunov's first method. The stability of the system is investigated applying 

Lyapunov's first method. Shin et al [7]. achieved control of the active vibrations in the clamps using the control 

unit in the positive feedback of the position with the torque sensor pair operator. 

Ouakad et al. [8] improved the behavior of a micro beam by using a nonlinear feedback controller. Also 

presented is a novel control design that regulates the pass band of the considered micro beam. El-Ganaini. [9] 

Found an analytical and numerical study to investigate the vibration and stability of the Van der Pol equation 

subjected to external and parametric excitation forces via feedback control. The stability of the system is 

investigated applying the Lyapunov first method. The stability of the system is investigated applying Lyapunov 

first method. 

 El-Ganaini et al. [10] proposed a time-delayed positive position feedback controller to reduce and 

control the horizontal vibration of a magnetically levitated body subjected to multi force excitations. They 

exercised the method of multiple scales perturbation technique to obtain an approximate solution that clarifies 

the nonlinear behavior for both amplitude and phase of the whole system and shows the effects of time delay on 

the system. Zhao and Xu, [11] used delayed feedback control to restrain or stabilize the vibration of the primary 

system in a two-degree-of-freedom dynamical system with a parametrically excited the pendulum, studied 

internal resonance between pendulum and primary system and researched the effect of gain and delay on the 

vibration repression. As the delay converts at a fixed value of the gain, the vibration of the primary system can 

be suppressed at some values of the delay. The gain and delay could be chosen as the controlling parameters. 

Numerical simulation is convention, with the analytical solutions well. 

 Jun et al. [12] applied a nonlinear saturation controller NSC with a van der pol oscillator and 

additionally investigated the influence of feedback gains by using perturbation and direct numerical integration 

solutions. Gao and Chen [13] studied nonlinear analysis, design and vibration isolation for a bilinear system 

with time-delayed cubic velocity feedback. Gao and Chen [14] studied extensively the vibration control of many 

systems with the time delay by using different controllers. An active linear absorber based on positive position 

feedback control strategy has been developed and applied to suppress the high-amplitude response of a flexible 

beam subjected to a primary external excitation. El-Ganaini et al. [15] these researchers proposed a feedback 

controller of the positive time-delay position to reduce the horizontal vibration of the magnetic body subject to 

multi-force stimulation. This console is associated with the main system with 1: 1 internal ring. 

 Han et al. [16] interested with the designing and vibration control problem for networked nonlinear 

vehicle active suspension (NNVAS) with actuator time delay.  Inserted in vehicle communication network to 

active commentary, a novel model for NNVAS has been established based on the Takagi‐Sugeno fuzzy fusion 

technology. They have designed a reduced‐order observer to solve the physically unrealizable problem of road 

disturbances. Rath et al. [17] have proposed a feedback active control suspension scheme to achieve ride 

comfort while maintaining the vehicle's holding path on the road .First, they have estimated the states of the 

nonlinear system by using a speed high observer where the suspension stroke is the only measurable output. 

Then they designed the controller by using a recursive derivative nonsingular higher order terminal sliding mode 

approach that avoids singularity.  

 Kocak and Ergenc [18] introduced a new approach to structure a delayed resonator structure with 

acceleration feedback, where they have modified a classical delayed resonator to an observer-based structure. 

Silva-Navarro and Abundis-Fong. [19] have studied and experimental evaluation of a passive/active cantilever 

beam autoparametric vibration absorber a two-story building-like structure (primary system), with two rigid 

floors connected by flexible columns. Sayed and Kamel [20] investigated an active vibration absorber for 

suppressing the vibration of the non-linear plant when subjected to external and parametric excitations in the 

presence of 1:2 and 1:3 internal resonance. They used the saturation phenomenon and internal resonance to 

control the steady state and transient vibrations. The numerical result shows that the saturation control of steady 

state vibrations is efficient. The stability of the obtained numerical solution is studied using both phase plane 

methods and frequency response equations. 
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 El-Gohary and El-Ganaini [21] studied the vibration suppression of a damped structure subject to 

multi-parametric excitation forces. The model is represented by a two-degree-of-freedom system consisting of 

the main system and the absorber. They applied the multiple time scale perturbation to get an approximate 

solution up to the second order. The stability of the system is investigated numerically applying both phase-

plane and frequency response functions. They studied the effects of different parameters of the absorber on 

system behavior numerically. Leung et. al. [22] analyzed the steady state bifurcation of a periodically excited 

system, in which three kinds of delayed feedback controls are considered to discuss the effects. 

 Zhao and Xu, [23] applied the feedback control and saturation control to suppress the vibration of the 

primary system in a two-degree-of-freedom dynamical system with a parametrically excited pendulum and 

showed that the delayed feedback control could be used to suppress the vibration or stabilize the system when 

the saturation control was invalid. The vibration of the primary system can be suppressed by the delayed 

feedback control when the original system was in the single-mode motion. 

 

  Kamel et al. [24] investigated the coupling of two non-linear oscillators of the main system and an 

absorber representing the ultrasonic cutting process. They controlled the main system behavior at simultaneous 

primary and internal resonance condition, where the system damage is probable. Eissa et al. [25] considered 

active suppression of nonlinear vibrations applying saturation-based controllers. They studied its effect on the 

system's behavior. Time delay inherently exists in many active control systems as a result of transport delay, 

online computation, measurements of the system states, executing the control algorithms, and processing of the 

errors and control signals. 

  

In our work, we find that adding the absorber (time-delayed velocity feedback) minimizes the amplitude of 

vibration in the steady state, so we can control the effective stiffness associated with the passive absorber. The 

problem has been solved by using the Runge-kutta method. Effects of different parameters on the system 

behavior are studied numerically by using the MATLAB program. Finally, a comparison of previously 

published work is done at the end of this work. 

 

II.  MATHEMATICAL MODELING 

Fig.1 the mechanical system schematic diagram. The system of primary concludes the system of linear spring 

mass with viscous damping and it is excited by an external harmonic force F (t) = 0  F cos tΩ , with amplitude   

and excitation frequency Ω. With respect to relieve the harmonic vibrations produced by F (t) vibration absorber 

of an auto parametric cantilever-beam is used. The nonlinear absorber is collected by a thin beam joined the 

primary system and with an equivalent mass m at the end with lateral motion confined to the plane which is 

horizontal. The length l indicates the total length of the beam and c2 is a small viscous damping on the beam. 

There are two subsystems primary and secondary which are coupled by the inertia resulted means from the 

beam which is attachment, besides, due to the entire system requires any kind of actuators, it results in a purely 

passive vibration control scheme.  

 

 

 

 

 

  

 

 

 

 

 

Figure 1: schematic diagram of the system without absorber 

 

 

III. EQUATION OF MOTION WITH PPF CONTROL 

           The non-linear dynamical system is consists of external force .The system is represented by a two-

degree-of-freedom (2dof) coupled and differential equations represented by the main system and absorber. 

From the principles of the mechanics the derived equation of motion can be written the forms Eqs (1) and (2) 

[26]. 
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2 2

1 1 1 1+x 2ς ω x+ω x - h(yy+ y )= fcos(Ωt)- R x(t - τ)                                                                (1) 

  
2 2

2 2 2 2y+2ς ω y+(ω - gx)y+ βy(yy+ y )= -R y(t - τ)                                                                     (2) 

where x and y denote the longitudinal motion of primary system and lateral displacement of the passive 

cantilever beam absorber , respectively,  small perturbation parameter, 1 is natural parametric frequency of 

the primary system, 2 is natural frequency nonlinear absorber, 1 2,   are damping factor ,Ω is excitation 

frequency ,f external force,  actuation delay. 

IV. MATHEMATICAL ANALIYSIS 

 

Eqs (1) and (2) can be solved analytically using multiple time scale perturbation technique as:     

   

2
0 0 1 1 0 1 2 0 1x( t, )= x (T ,T )+εx (T ,T )+ε x (T ,T )+...

                           
                                                          (3) 

2
0 0 1 1 0 1 2 0 1y(t, )= y (T ,T )+εy (T ,T )+ε y (T ,T )+... (4)                                                         

                          
2

0 0 1 1 0 1 2 0 1x(t , )= x (T ,T )+εx (T ,T )+ε x (T ,T )+...                                                                             (5)  

2
0 0 1 1 0 1 2 0 1y( t , )= y (T ,T )+εy (T ,T )+ε y (T ,T )+...                                                                           (6) 

Where 0T =t is fast time scale, which is associated with changes occurring at the frequencies,
 
  and 1T = ԑt is 

the slow time scale, which is associated with modulations in the amplitudes and phases resulting from the non-

linearity’s and parametric resonance. In term of 0T and 1T the time derivatives became    

1 2
2

0
d

= D + D + D +...
dt

ε ε                                                                                                                                          (7)   

2
2 2

0 0 1 1 22

2

0

d
= D + 2 D D + D + 2 D ) +...( D

dt
ε ε                                                                                                                      (8) 

Where nD  differential operators; nD =
nT




  (n=0, 1).To obtains a uniformly valid approximate solution of this 

system we order the dimensionless parameters of system by the formal small parameter ԑ as following: 

1 1̂   , 2 2ˆ   ,
 

ˆh h   , 1 1
ˆR R  , 2 2

ˆR R  , ˆg g   ,
2 ˆ    , ˆf f                                    (9) 

Substituting Eqs (3 -6) into Eqs (1) and (2), and equate the coefficients of power of ԑ we obtain the following: 

 

Order (
0 ): 

2 2
0 1 0(D + )x = 0ω                                                                                                                                              (10) 

2 2
0 2 0(D + )y = 0ω                                                                                                                                                (11)   

Order (
1 ):   

2 2 2 2
0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0

ˆ ˆ ˆ ˆˆ(D + ) = -2D D - 2 D + D + (D ) D τω x x ς ω x hy y h y + fcos(Ωt)- R x
                       

(12)
 

2 2 2
0 2 1 0 1 0 2 2 0 0 0 0 0 2 0 0

ˆˆ ˆ(D + ) = -2D D - 2 D + D - D τω y y ς ω y gy x R y                                                              (13)   

The general solution of Eqs (9) and (10) can be expressed in the form:  

1 0

0 0 1 0( , ) = e +
iωT

x T T A cc                                                                                                                                  (14) 

2 0

0 0 1 0( , ) = e +
i T

y T T B cc


                                                                                                                              (15) 

where 0A and 0B are unknown function in 1T , which can be determined by imposing the solvability condition at 

the next approximation order by eliminating the secular and small- divisor terms. 

 

1 0
)

0 0 1 0 1( , ) = ( )e +
iω (T

x T T A T cc


 


                                                                                                            (16) 
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2 0
)

0 0 1 0 1( , ) = ( )e +
i (T

y T T B T cc
 

 


                                                                                                            (17) 

Expanding 0A  and 0B  in Taylor series, we get: 

2
0 1 0 1 0 1 0 1( ) ( ) ( ) ( ) ( )A T A T A T A T O                                                                                       (18) 

2
0 1 0 1 0 1 0 1( ) ( ) ( ) ( ) ( )B T B T B T B T O                                                                                       (19) 

Where 0 0,A B   prime donates derivative 1T  .Substituting Eqs (14-17) into Eqs (12) and (13) we   get:  

 

       1 01 0 1 0 1 0 1 0
2 2

0 00 1 1 1 1 0 1 1 0 1 1 0
ˆˆD + 2 D 2

i Ti T i T i T i T
x i A e A e i A e A e i R A e

        
 

       

         
   1 0 0 2 0 2 0 0 0

2 2 22 2 2
01 1 1 0 2 2 0

ˆ
ˆ ˆˆ 2 2 + +

2

i T T i T i T i T i Tf
i R D A e hB e hB e e e

      
    

                                (20) 

 

       2 02 0 2 0 2 0 2 0
2 2

00 2 1 2 1 0 0 2 2 0 2 2 0
ˆˆD + 2 D 2

i Ti T i T i T i T
y i B e B e i B e B e i R B e

        
 

                                                   

                           
   2 0 1 2 0 1 2 0

( + ) ( + )2
0 02 2 1 0 1 0 0

ˆ ˆ +
i T i T i T

i R D B e g A B e A B e
       

 
                                                                                        

                                1 2 0 1 2 0
( - ) ( - )2

0 01 0 0ˆ +
i T i T

g A B e B A e
    

                                                                    (21) 

After eliminating the secular terms, the general solution of equation (20) and (21) is given by: 

1 0 0 2 0

2 2
22 0

1 0 1 1 2 2 2 2
1 1 2

ˆˆ 2
( , ) +

2( ) ( 4 )

i T i T i ThBf
x T T A e e e cc

 

  


  

 
                                            (22)

   1 2 0 1 2 02 0

2 2
+1 0 0 1 0 0

1 0 1 1 2 2 2 2
2 1 2 2 1 2

ˆ ˆ
( , )

( ( ) ) ( ( ) )

i T i Ti T g A B gA B
y T T B e e e cc

     

     


   

   
                                    (23) 

Where ( iΓ , i=1…4) and 1A , 1B  are complex   function in 1T
,
 and cc is complex conjugate of the preceding 

terms. 

V. Stability analysis 

 
After  numerically  studying  the different resonance cases  and  deduce  the worst ones, one  of  the  

worst  cases  has  been chosen to study  the  system stability. The selected resonance case are combine between 

the Primary resonance and internal resonance ( 1 1 2, 2    ). In this case we introduce the detuning 

parameter 1 2,   according to: 

 

1 1 1 1̂=ω +σ ω + σ 
                                                                                                                              

(24)
 

1 2 2 2 2ˆ2 2ω = ω +σ ω + σ                                                                                                                        (25)                          

Where 1 2,   are the detuning parameters .Also  for  stability  investigation, the analysis  is   limited   to  the  

first  approximation . So, our solution is only dependent     on    0T    and   1T .  Substituting Eqs (24) and (25)    

into   Eqs. (20) and (21) and eliminating the secular terms leads to the solvability conditions 
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1 1 2 1 1 1
ˆ ˆ2 2 2

1 1 0 1 1 0 1 0 1 1 1 1 0 2 0
ˆˆˆ2 D 2 2 0

2

i i i T i Tf
i A i A i A R e i R D A e hB e + e            

      
 

                     (26) 

 2 2 2 1
ˆ2 2

02 1 0 2 2 0 2 0 2 2 2 1 0 1 0
ˆˆ ˆˆ ˆ2 D 2 0

i i i T
i B i B i B R e i R D B e ghA B e

          
                           (27) 

To analyze the solution of Eqs (26) and (27), it is convenient to express A in the polar form as: 

 

1 1 1 1
( )

0 1 1 1 0 1 1 1
1 1

( ) ,
2 2 2

i T i ii
A a T e D A a e a e

                                                                                                    (28)

2 1 2 2
( )

0 2 1 1 0 2 2 2
1 1

( ) ,
2 2 2

i T i ii
B a T e D B a e a e

                                                                                                   (29) 

Where 1 2, , ( 1,2)ia a i   are unknown real-valued function .Inserting Eqs (28) and (29) into Eqs (26) and (27)  

and separating the real and imaginary parts we have the following: 

 

   
2 2
2 2 1 1 1

1 1 1 1 1 2 1 1 1 1 1
1 1

sin cos sin sin
2 2 2 2

ha a R R f
E a a + + a +

 
        

 
                                                          (30) 

   
2 2
2 2 1 1 1

1 1 1 2 1 1 1 1
1 1

cos sin sin cos
2 2 2 2

ha a R R f
E a + a

 
      

 
                                                                         (31) 

   
2
1 1 2 2 2

2 2 2 2 2 2 2 2 2 2 2
2

sin cos sin
4 2 2

ga a R R
E a a   a a

 
       


                                                          (32) 

   
2

2 1 1 2 2 2
2 2 2 2 2 2 2 2

2

cos sin sin
4 2 2

ga a R R
E a + a a

 
     


                                                                          (33) 

Where dot represent derivative 

1 1 1 1 1 1 1

2 2 1 1 2 2 1 1 2

ˆ

ˆ 2 2

T T

T + T +

    

      

    


    
                                                                                                              (34) 

Differentiate (34) to obtain  

1 1 1

2 2 1 1 2

1 1
( ) ( )

2 2
+

  

    

 



   


   

                                                                                                                           

(35) 

For  steady  solutions 1 2 0, 0ia a     and the  periodic solution at  the  fixed  points  corresponding and 

insert (35) to Eqs (30)-(33) is  given by: 

   
2 2
2 2

1 1 1 2 1 1 1 1 1 1 1
1 1

1
sin sin cos sin

2 2 2 2

haf
a + a R a R

 
        

 
                                                            (36) 

   
2 2
2

1 1 2 1 1 1 1 1 1 1
1 1

1
cos cos sin cos

2 2 2 2

hbf
a + a R a R

 
       

 
                                                            (37) 

2
1 1 2 2

2 2 2 2 2 2 2 2 1 2 2
2

1
sin cos( ) ( )sin( )

4 2 4

ga a R
a  a R a

 
        


                                                           (38) 

     
2
1 1 2 2

2 1 2 2 2 2 2 2 1 2 2
2

1 1
cos sin cos( )

2 4 2 4

ga a R
a + + a R a +

 
        


                                              (39) 

 

 

From Eqs (36)-(39) we get the corresponding frequency response equation (FRE) is: 
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     
 

 

2
2

2 1 22 2 2 2 2 2 2 2 1
1 2 1 2 2 22 2 2 2 2

1 1 1 1 1

24 2 2
cos sin sin

+R R R
a + +

g g g g g

       
       

    

  
      
  
  

                              

 

           

2

2 2
1 2 22

1

cos
R

+
g

 
   




 




                                                                                                                  (40) 

   

   
2 4 2 3 2

2 2 2 2 2 2 1
1 1 1 2 1 1 1 1 1 13 3

1 1 1 1 1

1
cos cos sin( )

2 2 2

h a hR a Rf
a a R a

ga ga

   
        

  

 
        

         

 
 

 

2 3 23 2 3 2
2 2 1 22 2 2 2 2 2

1 2 2 1 1 23 3 3
1 1 1 1 1 1

( )sin sin
2

hahR a hR a
a

ga ga ga

    
      

  

 
     

 
 

                       

   

2
3 2
2 2 2 1

1 1 1 1 2 2 1 1 13
1 1

1
sin ( )cos cos( )

2 22

hR a R
a R a

ga

  
        




    




                                                        (41) 

VI. Linear solution 

To study the stability of the linear solution of the obtained fixed points, let us consider A and B in the forms 

1 1

0 1 1
1

( )
2

i T
A p iq e


                                                                                                                                           (42) 

2 1

0 2 2
1

( )
2

i T
B p iq e


                                                                                                                                          (43) 

where 1 1 2 2, ,p q p and q  are real values and considering 1 1  . 

Substituting from Eqs (40) and (41) into the linear parts of Eqs (26) and (27) and separating real and imaginary 

parts, the following system of equations is obtained: 

8 9
1 1 1

7 7

M M
p p q

M M

   
     

                                                                                                                                        

(44) 

4 8 4 92 1
1 1 1

1 1 7 1 1 7

E M E MM M
q p q

E E M E E M

   
        

   
                                                                                                    (45) 

11 12
2 2 2

10 10

M M
p p q

M M

   
     

   
                                                                                                                               (46) 

5 6 11 6 124
2 2 2

2 2 10 2 2 10

M E M E MM
q p q

E E M E E M

   
        

   
                                                                                               (47) 

 

The above equations can be written in a matrix form as:     
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8 9

1
7 7

4 8 4 92 1
1

1 1 7 1 1 7

11 122

10 10

2

5 6 11 6 124

2 2 10 2 2 10

0 0

0 0

0 0

0 0

M M
pp

M M

E M E MM Mq
E E M E E M

M Mp

M M
q

M E M E MM

E E M E E M

    
       

     
  
           
      
  

     
     
     

       
          
     

1

1

2

2

q

p

q

 
 
 
 
 
 
 
 
 
 
  

                                         (48) 

 The stability of the linear solution in this case is obtained from the zero characteristic equation 

 

8 9

7 7

4 8 4 92 1

1 1 7 1 1 7

11 12

10 10

5 6 11 6 124

2 2 10 2 2 10

0 0

0 0

0 0

0 0

M M

M M

E M E MM M

E E M E E M

M M

M M

M E M E MM

E E M E E M









     
            

 
     

          
    


           
    

     
                

0










                                                 (49) 

After extract we obtain that: 

4 3 2
1 2 3 4λ +r λ +r λ +r λ+r =0                                                                                         (50) 

Where          and    are defined in Appendix. 

According to Routh-Huriwitz criterion, the above linear solution is stable if the following inequalities are 

satisfied: 

2
1 1 2 3 3 1 2 3 1 4 40 0 0r > ,r r - r > 0,r (r r - r )- r r > ,r >                       

VII. Non-linear solution 

To determine the stability of the fixed points, one lets 

 21 10 11 2 0 120 1, 1,2, m m ma a aa a a m                                                                                    (51) 

Where          and     are solutions of Eqs (36) - (39) and 11 21 m1a , ,a   are perturbations which are assumed 

to be small compared to 10 20a ,a  and m0 . Substituting Eq (51) into Eqs (30)-(33) using Eqs (36) - (39) and 

keeping only the linear terms, we obtain: 

1 11 11 12 11 13 21 14 21a a a                                                                                                  (52) 
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11 21 1 22 11 23 21 24 21a a                                                                                                   (53) 

 

2 31 11 32 21 33 21a a a                                                                                                                  (54) 

 

 42 11 43 21 43 2121 41 11 aa                                                                                              (55) 

 

Where , ( 1...4),( 1...4)ij i j    are functions defined in Appendix. 

 

VIII. Numerical results and discussion 

 
To study behavior of the main system numerically the (Rung-Kutta method) of the nonlinear system, given by 

Eqs (1) and  (2) at basic without absorber, the primary and internal resonance cases( 1 1 2, 2      ) are 

obtained as shown in figures (2)-(4).these solutions are obtained at selected values ( =2.5, 1 22    ).  

  

 

 

                            

Figure2: Response of the system without absorber at basic case 

 

 

 

 

 

                       Figure3: Response of the system at resonance case ( 1 1 2, 2     )     

                                                                                                                                            

 

 

           

              Figure4: Response of the system with absorber in resonance case ( 1 1 2, 2     )    

Fig. (2) Show that study of amplitude on the main system without absorber of the selection of values as 

( 0.05f   , 1 0.01  , 1 1.1   , 2.5  ).Fig.(3) Study the amplitude in the system with absorber at resonance 

case ( 1  )we find that in this case the amplitude at maximum reached (up to approximately 0.38),Fig.(4) 

Show the effect of time delay at the response case, we find absorber able to reduce and control vibration 

significantly until amplitude reached (up to approximately 0.055).   
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                   Figure5: Effect of parameters on amplitude of the system without absorber 

 

fig.5 show effect of different parameter on the main system without absorber .can see amplitude increasing as 

1,f   are increased .Also when decreasing the values , 1  are increased as shown 

 

 

     Theoretical frequency and force response curve 
 

The frequency equation is represented graphically by using the numerical methods. The frequency 

response equation is nonlinear algebraic equation, which are solved numerically by using Newton Raphson 

method .frequency response equation (19) and (20) is nonlinear algebraic equation, the results are shown in 

figure (6) for the steady state amplitudes 1a  against parameter 1 and figure (7) for the steady state amplitudes 

2a against parameter 1  
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Figure7: Stability of the practical case, 2 =0 on steady state amplitude 1a against 1  
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Fig.7 show effect of parameter on the system at the steady-state amplitude 1a increased when 2 1 2( , , , )f    

increasing and amplitude value decreased when 1 1 2( , , , , )g R R  increasing. In the curve (a) shows the relation 

1a  and 1 it shows that the sable in the bottom branch and unstable in the up branch, the period of stability and 

un-stability changes with the study of parameters as is shown 
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Figure8: Stability of the practical case, 2 =0 on steady state amplitude 2a against 1  

 

Fig.8 show effect of parameter on the system at the steady-state amplitude 1a increased when 

1 2 1 2( , , , , )f R R  increasing and decreasing 2 and amplitude value decreased when 1( , , , )g h  increasing. In 

the curve (a) shows the relation 2a  and 1 it shows that the sable in the bottom branch and unstable in the up 

branch, the period of stability and un-stability changes with the study of parameters as is shown 
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IX. Conclusion 

 
we studying the vibration numerically on the system with and without control .To study the stability of 

the system obtained numerical solution is investigated using both phase plane methods and frequency response 

equation in conjunction with study of resonance case an addition to studying effect of time delay on the system 

to reduce the amplitude and control on vibration, both frequency response equation and results based on the 

present investigation the above study the following conclusions are shown: 

 

1- The study of resonance cases numerically we conclude that the worst cases simultaneous resonance 

   1 1 2, 2     on the system with absorber and without and comparison of the absorber effect on both 

cases. 

 

2- The behavior of amplitude on the worst case with control is more stable and control vibration is almost 

nonexistent than system without control, where the effect of absorber reduce the amplitude from (0.38 nearly) to 

(0.055 nearly) in case    1 1 2, 2    . 

 

3- The steady state amplitude of the main system is monotonic increasing function when increasing values 

2 1 2( , , , )f   be on steady state amplitude 1a against 1 , and monotonic decreasing function when increasing 

values 1 1 2( , , , , )g R R   on steady state amplitude 1a  against 1  . 

 

4- The steady state amplitude of the main system is monotonic increasing function when increasing values 

1 2 1 2( , , , , )f R R 
 
and decreasing 2 be on steady state amplitude 2a against 1 , and monotonic decreasing 

function when increasing values 1, , ,g h   on steady state amplitude 2a  against 1  . 

 

5- The relation 1a  and 1 it shows that the sable in the bottom branch and un-stable in the up branch, the period 

of stability and un-stability changes with the study of parameters and relation 2a  and it shows that the sable in 

the bottom branch on the curved and unstable in the up branch, the period of stability and instability changes 

with the study of parameters. And the effect of time delay on the system at the worst case very clear and by 

using this absorbent the vibration is controlled to maintain the use of the device safely without causing any 

damage or damage to the device. 
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Appendix 
 

1
1 1(1 cos( ))

2

R
E


    , 2

2 2(1 cos( ))
2

R
E


   ,
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3 12
1

(1 (sin( )) ^ 2)
4

R
E

E


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