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ABSTRACT :   Vibration of structures is often an unwanted phenomena and should be avoided or 

controlled. In this paper, we study the effect of an integral resonant controller (IRC) on reducing the 

vibrations of the cantilever beam excited by an external force. The suggested system has two degree of 

freedom which is a non-linear system with the fifth and cubic nonlinearity terms excited by an external 

force. The second order approximate solutions of the system equation are sought using the multiple scale 

perturbation (MSPT). The frequency response equation is studied to test the behavior of the steady state 

solutions at the primary resonance case      . The behavior of uncontrolled and controlled system is 

presented using time histories. Also, the stability of the system is investigated applying frequency response 

equation using the Runge-Kutta fourth order method. To scrutinize the time histories of the system before 

and after using IRC. The effects of different parameters of the system are studied numerically. 
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I. INTRODUCTION  

A many studied showed that the resonance of the nonlinear system and its effect on the stability. Nayfeh 

and Mook [10] studied the nonlinear systems with primary and secondary resonance. Boru [5] explained the 

stability of Laval rotor with noncircular shaft. In the other work of Ref. [6] used the internal resonance to 

suppress the vibration of the cantilever beam excited by under chord wise and decreased blending of the 

response curve is due to the nonlinearity. Sadri and Younesian [12] demonstrated the nonlinear harmonic 

vibration acting on a plate cavity system in cases: primary, secondary and combination of resonances and 

discussed their influence on the stability of the system. 

Nonlinear oscillations can be reduced [8, 14], using the time delayed to suppress the vibration of the 

structure, such as linear and nonlinear time delayed position feedback control motions of a van-der pol. In Ref. 

[9] abled to control in the vibrations of the cantilever beam by time delay controller state feedback and 

discussed the stability in case primary resonance. In [15], the authors introduced the velocity feedback control to 

suppress the vibration of the cantilever beam. Saeed et al. [13] investigated suppression of the nonlinear 

dynamic system by the time delay saturation based controller and analyzed the approximate solution and 

numerical solution. Omidi and Mahmoodi [11] described that the effect of nonlinear integral positive position 

feedback (NIPPF) and the integral resonant controller (IRC) and positive position feedback (PPF) on the 

cantilever beam also, they showed that the effect of (NIPPF) was the best of controller to reduce the response 

curve. In [8], Li et al. used the time delay and velocity feedback as the active control of the cantilever beam in 

two cases: primary and secondary resonance with an intermediate lumped mass. Kandi and EL-Gohary [7], 

presented a method to reduce the oscillation resulted to rotating speed using the nonlinear saturation controller. 

Atkinson et al. [1] demonstrated the numerical solution of ordinary differential equations a lot of ways, 

including Runge-kutta methods and discussed the stability of those methods. 
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Recently, Bauomy et al. [4] made a combination of IRC and nonlinear saturation controller (NSC) to 

improve the vibrational behaviors of a cantilever beam model through an intermediate lumped mass. Amer et al. 

[2] achieved results that the effect the nonlinear positive position feedback on a hybrid Rayleigh-van –der –pol 

doffing oscillator. In [3], the authors investigated four type of controller on the vibration of a cantilever beam 

that the negative linear velocity feedback, the negative cubic velocity feedback, NSC and positive position 

feedback. 

In this paper, we study the effect of integral resonant controller on the vibration of a cantilever beam with 

cubic and fifth nonlinearity terms excited by an external force by using the MSPT. The numerical results show 

that after using the control the resonance caused by nonlinear borders is reduced. Effects of some different 

behavior parameters and numerical comparison results is illustrated 

.II. MATERIALS AND METHODS 

The equation of motion of a cantilever beam with (IRC) described by the following differential equation 

  
3 5 2 3 5 2 2 3 2 4

1 2 1 2 1 2
ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ( ) ( ) cos ,x x x x x x x xx x x x x x x f t Jz                   

                  (1) 

,z z x  
                                                                                                                                  (2)                     

where x is the displacement of the cantilever beam ,   is the natural frequency, Ω is the excitation 

frequency , η and γ are the integrator gain. 

To execute the solution procedure, the system parameters should be scaled as follows:  

ˆˆ ˆ ˆˆ ˆ, , , , , , 1,2i i i i i i f f J J i               
 

 where ε is a very small perturbation parameter(i.e.    ) 
3 5 2 3 5 2 2 3 2 4
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  
                    (3) 

where, α represents the damping coefficient,    ,   and           are  nonlinearities terms coefficients. 

The parameter f is the amplitude of the excitation force. 

Perturbation techniques  
We seek a uniform approximate solution to (2) of the form 

2

0 0 1 1 0 1( , ) ( , ) ( , ) ( ),x t x T T x T T O    
 and                                                                                             (4) 

1 1 1( , ) ( , ) ( , ).o o oz t z T T z T T  
                                                                                                      (5) 

We note that the            represent different time scale are defined by  

     and            

0 1 ...
d

D D
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2
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                                                                           (6) 

Substituting from (4) and (5) into (2) and (3) equating each of the coefficients of   and   to zero, we get 
2 2
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                                                                                                                          (8) 
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The general solution of Eq. (7) is 

0 Aexp( ) C.Cox i T 
                                                                                                          (10)                    

We use Eq. (10) to obtain the solution of equation (8)  

0

02 2

A( )
B exp( ) C.C,

T

o

i
z e i T

   


 

 
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                                                                            (11)                                      

 

 

where A and B are complex functions in  and C.C denotes the complex conjugate terms.  
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Substituting from Eq. (10) and (11) into (9), we get  
2 2 3 2 5 3 2 2

0 1 1 1 2 1

3 2 2 2 2 3 2

2 1 2 02 2

5 5 5 2 5 5 2 4

2 2 2 0 1 2 2

3 2 3

1 1 1 0

( ) ( 2 A- A 3 A A-10 A A 3 A A

A( )
-10 A A 2 A A 8 A A )exp( )

( A A 2 A )exp(5 ) ((5 5 6 )A A

+( 2 )A )exp(3 ) exp(
2

D x i D i i i

i
i T

i i T i

f
i i T i

       

  
     

 

          

     

    


  



     

    0 0) BJ exp( ) C.CT T  
                  (12)   

 

The particular solution of Eq. (1.12) is  

1 1 0 2 0 0 0E exp(3 ) E exp(5 ) exp( ) B exp( ) C.C
2

f
x i T i T i T J T        

                                           (13) 

where E1and E2 are complex functions in  . 

 

From the solution derived above, several resonance case can be extracted. Resonance reported in this 

approximation order is primary resonance:    . 

 

Stability of  steady state solution  
 

For stability of system is investigated at primary resonance    .by eliminating the terms of Eq. (12) not 

to produce the secular terms in Eq. (13), and convert small-divisors into secular terms by       , one 

finds the solvability conditions  
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The polar form of function A can be expressed as 

1

1
A= ( )exp( )

2
a T i

                                                                                                                              (15) 

where a is the steady-state amplitude. Inserting Eq. (15) into Eq. (14) and separating real and imaginary 

parts. We obtain  
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2 2 2 4

1 1 2 2 2 2

1 1 J
(2 3 ) (4 5 ) cos( )

8 16 22( )

f
a a

a


       

   

 
     


                                       (17) 

where 1φ=σT -ζ ,the Eq.(17)becomes: 
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         Equilibrium solution  

At steady-state motion we have: 

   ̇   ̇    

Substituting Eq. (17) and (18) we get: 

2 3 4 5

1 2 2 2

1 3 5 J
sin( ) ( )

2 8 16 2( )

a
a a a

f

 
     

 
   


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Finally, to derive the steady-state frequency response, we are squaring  

Eqs. (19) and (20) then adding: 
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2 3 4 5 2 2 2 2 4
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The stability of a particular equilibrium solution was determined of jacobian matrix of the right-hand side of 

Eq. (12). If the real part of each eigenvalue is negative, the corresponding equilibrium solution is 

asymptotically stable. If the real part is positive, the corresponding equilibrium solution is unstable.to 

evaluate the stability we assume that  

0 1 0 1,a a a      
                                                                                                                         (22) 

 

where           satisfies Eq.(19)and (20),         are perturbations which are assumed to be small 

compared to        . Substituting Eq. (21) into Eqs. (16) and (18) we keep only the linear terms 

of        , we have 

1 11 1 12 1r ra a  
                                                                                                                                  (23) 

1 21 1 22 1r ra  
                                                                                                                                  (24) 

where    (i=1,2)and(j=1,2)are given in the appendix. Eqs. (22)and(23) 

can be represented in the matrix form as: 
T T
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                                                                                                                           (25) 
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 
 

11 12

21 22

r  r
[R]

r  r
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  
   

is the jacobian matrix. 

 

Thus the stability of the steady-state motion depends on the eigenvalues of the jacobian matrix. We can 

obtain the following eigenvalue equation  

11 12

21 22

 r -    r
0.

 r        r







                                                                                                                               (26) 

where  

Expanding this determinant then the eigenvalues can be determined by the following stability polynomial: 
2

11 12 11 22 12 21(r r ) r r r r 0.     
                                                                                                         (27)                              

where   denotes eigenvalues of matrix [R], For the above system’s solution to be stable, the Routh-Hurwitz 

criterion must be satisfied such that: 

11 22 11 22 12 21r r 0          and           r r r r 0   
                                                                                      (28) 

 

 

III. RESULTS AND DISCUSSION 

 Numerical consequence 

 In this part, we use the Runge-kutta fourth order method to estimate the numerical solution. Figure1: shows the 

responses of the model without control process at    and zero initial:  
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1 2 1 2

1 2

10, 0.16, 0.3331, 0.1299, 22.5, 0.1319,

4.5, 2.2, 0.5, 10, 10, 10.f J

     

   

     

      
 

The influence of controller appears in reduction of the Jump-Phenomenon caused by the cubic and fifth 

nonlinearity terms, the open-loop curve denotes the response curve of the system without control (i.e. 

0, 10, 0)J     and the closed-loop curve denotes the effect the control on the system. 

 
Figure1: Comparison between the system with control and without control. 

 

Time history 

   We show the time history of the system without control at primary resonance in figure2.We can see from this 

figure that the system’s response is approximately 0.1.the vibrations decrease by 0.04.thus, the effectiveness of 

the IRC is 60%.figure3, illustrates the results when the controller is effective, when    .the effectiveness of 

the controller is Ea (Ea =steady state amplitude of the main system without controller / steady state amplitude of 

the main system with controller) is about 2.5. 

 

 

Figure2: time history of the main system at primary resonance. 
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Figure3: The time history of the system with control. 

Response curves 

Eq. (21), solved numerically to obtain the graphical solution for the amplitudes of both cantilever beam and the 

IRC controller via the detuning parameter .As shown in figure4. 

 

  

 The response curve of the system with control decreases when natural frequency ω and damping coefficient α  

increases as illustrated in figure 5A and B. figure 5C and D shows that the amplitude of the response curve 

increases, when the increasing in the excited force f and the integrator gain η. When the nonlinear parameter   

increases, the response curve decreases as shown in figure5E.  

Figure4: the response curve of the system with control. 
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Figure5: the effect of some parameters on frequency-response curve. 
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The effect of some parameters 

Figure6 demonstrate the amplitude of the main system is monotonic decreasing in the linear damping coefficient

  and nonlinear parameters 1 2 1, and  
.the amplitude of the system damped like control gain J increased as 

shown 

 

 

 

 

    

 

 

 

Figure6: the influence of the parameters of the main system without control. 

Figure7: the effect integrator gain on the system. 
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IV.CONCLUSIONS 

Within this work, an integral resonate controller has been studied for     of a dynamical system. The method 

of multiple scales is applied to derive two first order differential equations of the amplitude and phase of the 

response. The stability and effects of different parameters are studied numerically, the amplitude of the vibrating 

system was repressed from about 0.1 to about 0.04 and the vibrations were reduced by about 60% from its value 

without control and the effectiveness of the integral resonant controller Ea is nearly about 2.5. The following 

remarks can be concluded: 

 The increasing of external force f was failing the uncontrolled system. 

 The steady state amplitude diminish due to the increasing damping term α. 

 The amplitude is a decreasing function of the nonlinear parameters 1 2 1, and  
. 

 The response of the controlled system decreased with decreasing the natural frequency ω. 

REFERENCES 

[1] Atkinson, K., Han, W., &Stewart, D.E.: Numerical solution of ordinary differential equations, John Wiley& 

sons. (2011). 

[2] AmerY.A, El-sayedA.T, Abd El-salam, M.N.: Outcomes of the NIPPF controller linked to a hybrid 

Rayleigh-Van der Pol-Duffing Oscillator. Journal of Control Engineering and Applied Informatics 22(3):33-41. 

(2020). 

[3]  Amer,Y.A., El-sayed,A.T, Abd El-salam, M.N :A Suitable active control for suppression the vibrations of a 

cantilever beam. (2022). 

[4] Bauomy, H.S. & EL-Sayed A. T: Mixed controller (IRC+NSC) involved in the harmonic vibration response 

cantilever beam model. Measurement and Control 53(9-10): 1954-1967. (2020). 

[5] Boru, F. E.: Numerical and experimental response and stability investigations of anisotropic rotor-bearing 

systems, Kassel University press GmbH. (2010). 

[6] Eftekhari, M., Ziaei-Rad, S., Mahzoon, M.: Vibration suppression of a symmetrically cantilever composite 

beam using internal resonance under chord wise base excitation. Int. J. Non-Linear Mech. 48, 86–100. (2013). 

[7] Kandi, A., El-Gohary, H. A.: Suppressing the nonlinear vibrations of a compressor blade via a nonlinear 

saturation controller. Journal of Vibration and Control24 (8): 1488-1504. (2018). 

[8]  Li, X., Ji, J.C., Hansen, C.H., Tan, C.:The response of a Duffing–van der Pol oscillator under delayed 

feedback control. J. Sound Vibr. 291 (3), 644–655. (2006). 

[9]  MACCARi, A.: Vibration control for the primary resonance of a cantilever beam by a time delay state 

feedback. Journal of Sound and Vibration 259(2): 241-251. (2003). 

[10] Nayfeh, A. H. and Mook, D. t.: Nonlinear oscillations, John Wiley &Sons. (2008). 

[11]  Omidi, E. and Mahmoodi. S. N.: Sensitivity analysis of the nonlinear integral positive position feedback 

and integral resonant controllers on vibration suppression of nonlinear oscillatory systems." Communications in 

Nonlinear Science and Numerical Simulation 22(1-3): 149-166. . (2015). 

[12] Sadri, M. and Younesian. D.: Nonlinear harmonic vibration analysis of a plate-cavity system. Nonlinear 

Dynamics 74: 1267-1279. (2013). 

[13] Saeed, N. A., Awwad,M.E, El-Meligy,MA and  Naser,EA.:Sensitivity analysis and vibration control of 

asymmetric nonlinear rotating shaft system utilizing 4-pole AMBs as an actuator. European Journal of 

Mechanics - A/Solids 86: 104145. (2021). 

[14] Xu, J. and Chung. K.: Effects of time delayed position feedback on a van der Pol–Duffing oscillator. 

Physica D: Nonlinear Phenomena 180(1-2): 17-39. (2003). 

[15] Yaman, M. and Sen ,S.:Vibration control of a cantilever beam of varying orientation. International Journal 

of Solids and Structures 44(3-4): 1210-1220. (2007). 

 


