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ABSTRACT:  In the present work, the effect of local and inclined loads on plane waves in a fiber-reinforced 
visco-thermoelastic solid will be investigated in the context of the dual-phase-lag model. The problem is 
solved numerically by the method of normal mode analysis. Numerical results for thermal temperature, 
displacement components, and stress are plotted and analyzed. Graphical results show that the effects of the 
angle of inclination and the nonlocal parameter are evident. Variations in these quantities are plotted in the 
context of the dual-phase-lag model with isolated boundaries to show the effects of nonlocal parameters and 
angle of inclination on wave propagation in the fiber-reinforced visco-thermoelastic solid. Compute the 
physical fields with suitable boundary conditions and perform numerical calculations using MATLAB 
programming. It was found that the inclined load plays a significant role in the distribution of all the physical 
quantities. The local parameter has a strong influence on the variation of all the physical quantities. The 
boundary conditions are met by all physical quantities. 
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I. INTRODUCTION 
      In 1972, Eringen (1972a) proposed the nonlocal continuum theory. The nonlocal elasticity theory, 

which provides meaning for small-scale effects, is established, along with the theory of nonlocal strain gradients, 

strain gradients, surface elasticity, and modified corresponding stress theories. Zenkour and Abouelregal (2016) 

discussed the influence of thermo-sensitive nanobeams using the thermoelasticity theory of the nonlocal solid 

with thermal relaxation time. Rotation's impact on a nonlocal, thermoelastic porous medium with a memory-

dependent derivative was investigated by Said et al. (2022a). The nonlocal thermoelastic problem's analytical 

solutions were presented by Abbas et al. (2022). The nonlocal thermoelastic theory has been explained by many 

authors, such as Zhu et al. (2017), Sarkar et al. (2020a, 2020b), and Said et al. (2024). 

      The Kelvin-Voigt model is one of the most commonly used macroscopic models to describe the 

viscoelastic behaviour of materials. This model represents the delayed elastic response under load, where the 

deformation is time-varying but recoverable. Koltunov (1976) provided critical experimental results for 

determining the mechanical properties of viscoelastic materials. Said (2022) studied the effect of gravity on 

viscoelastic micro solids with voids and temperature. Gupta (2013) studied wave propagation in a viscoelastic 

transversely isotropic medium. Othman et al. (2002, 2017, 2018a), Said et al. (2022b), and Khoeini et al. (2023) 

discussed different kinds of thermo-viscoelastic problems. 

        Due to their exceptional qualities, fiber-reinforced polymers are utilized in many different 

industries. For the past few decades, fiber-reinforced materials' stress-deformation analysis has been a 

significant area of study in solid mechanics. In viscous, anisotropic, fiber-reinforced thermal media, Bayones 

and Hussien (2017) studied the propagation of Rayleigh waves under the impact of rotation. The effect of an 

inclined load on a functionally graded, temperature-dependent thermoelastic material was analyzed by Barak et 
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al. (2022). Abbas and Othman (2011), Deswal et al. (2019), Abouelregal and Alesemi (2022), and Yadav et al. 

(2023) have studied many problems in fiber-reinforced thermoelastic materials.   

            The present problem discusses the effect of an inclined load and the nonlocal parameter on a 

fiber-reinforced visco-thermoelastic medium in the context of the dual-phase-lag model. The analytical solutions 

for the field variables of interest are obtained by using normal mode analysis to obtain the exact expressions for 

physical quantities. Numerical simulation results are obtained and plotted to show the effects of nonlocal 

parameters and an inclined load on wave propagation in a fiber-reinforced visco-thermoelastic medium. Results 

are compared with different values of the nonlocal parameter and with different values of the angle of 

inclination.  

II. FORMULATION OF THE PROBLEM 

We consider a nonlocal fiber-reinforced visco-thermoelastic anisotropic medium in a half-space 

( 0)x  . Plane strain in the xy  plane with the displacement vector ( , ,0), ( , , ), ( , , )u v u u x y t v v x y t  u . 

Suppose that an inclined line load 0f  per unit length is acting on the z - axis and its inclination to x - axis is   

.  

The constitutive equations are as in Belfield et al. (1983), Said (2020), and Eringen (1974). 
2 2 * * * * * *(1 ) 2 ( ) 2( )( )ij kk ij T ij k m km ij i j kk L T i k kj j k ki ije e a a e a a e a a e a a e                     

                         

* ,i j k m kma a a a e   
                 

(1) 

The parameters * * * * * *, , , , andT L      are defined as 

* * * * *

0 0 1 2 0(1 ), (1 ), (1 ), (1 ), (1 ),T T L L
t t t t t

              
    

         
      

*

0(1 ).
t

  


 


                                                                                                                                 
                 

(2) 

where, 0 0a e   is the elastic nonlocal parameter having a dimension of length, 0 0,a e  respectively, are an 

internal characteristic length and a material constant, ij  are the components of stress, ije  are the components of 

strain,
 kk
e  is the dilatation, ,   are elastic constants, [see Eringen et al. (1972b, 1972c) for details],

 

, , ( )L T     are reinforcement parameters,
 0 1 2 0 0, , , ,      are the viscoelastic parameters, T is the 

thermal expansion coefficient, 0T T    where T  is the temperature above the reference temperature
 0 , ijT  is 

the Kronecker’s delta, and (1,0,0)a  is fiber-direction 1 2 3( , , ),a a a a 2 2 2

1 2 3 1a a a   . 

The equations of motion in the absence of body force 

 ,ji j iu                                                                                                                                         (3) 

The heat conduction equation in the context of dual-phase-lag model in the form 

* 2 *

0(1 ) (1 )[ ).q Ek T C T T e
t t

   
 

    
 

                                                                                                       (4) 

Where 
*k  is the coefficient of thermal conductivity, EC  is the specific heat at constant strain,   is the phase-

lag of the temperature gradient, q  is the phase-lag of heat flux, and  is the mass density. 

Substituting (1) into (3), we get  
2 2 2 2

2 2
01 2 32 2 2

(1 )(1 ) ,
u u v u T

A A A
tx y xt x y

  
    

     
    

                                                                           (5) 

2 2 2 2
2 2

03 2 42 2 2
(1 )(1 ) ,

v v u v T
A A A

tx y yt x y
  

    
     

    
                                                                          (6) 

where   * * * * * * * * * * *

1 2 3 4( 2 4 2 ), , , 2 .T L L L TA A A A                      

Consider the following non-dimensional variables: 
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0
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                  (7) 

Using the above non-dimensional variables defined in Eq. (7), the above governing equations take the following 

form: 
2 2 2 2

2 2
01 2 32 2 2

(1 )(1 ) ,
u u v u

h h h
tx y xt x y




    
     

    
                  (8) 

2 2 2 2
2 2

03 2 42 2 2
(1 )(1 ) ,

v v u v
h h h

tx y yt x y




    
     

    
                  (9) 

2

1 2 0(1 ) (1 ) (1 ) .q d d e
t t t

    
   

         
                                                                                                       (10) 

Where   

2

3 0 0 0 0 01 2 4
1 2 3 4 1 22 2 2 2 * *

0 0 0 0

( , , , ) ( , , , ), , .
( 2 )

E

T

A C c l c l TA A A
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c c c c k k

 

     
  


 

III. NORMAL MODE ANALYSIS METHOD  

   We solve the problem of a nonlocal fiber-reinforced thermoelastic medium by using normal mode analysis 

as follows: 
i( , , , )( , , ) ( , , , )( )e .by mt

ijiju v x y t u v x    
                

(11) 

Where b is the wave number in the y  direction, m is the complex constant, i= -1 , and , ,u v  , ij  are the 

amplitudes of the field quantities. 

Using Eq. (11) in Eqs. (8)- (10), we get  
2

25 6 7( D ) (i D) D 0,A A u bh v A    
                

(12) 

2
2 8 9 7(i D) ( D ) i 0,bh u A A v A b   

                
(13) 

2

10 11 12 13D ( D ) 0.A u A v A A      
                

(14) 

where  
1 2 3 4

1 2 3 4
2 2 2 2

0 0 0 0

( , , , ) ( , , , ),
A A A A

h h h h
c c c c   

  

1 0 1 2 0 0(1 ) 2 (1 ) 4 (1 ) 2 (1 ) (1 ),T LA m m m m m                  

2 0 0 2(1 ) (1 ) (1 ),LA m m m            3 2 4 0 1(1 ), (1 ) 2 (1 )L TA m A m m            

2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 1 6 3 7 0 8 3 9 4, , (1 ), , ,A h m A m b h m b A m A h m A m b h m b               

2

10 2 0 11 10 12 13 1(1 )(1 ), i , (1 ), (1 ) (1 ),q qA d m m A bA A m A d m m b m                

Eliminating ( )v x  and ( )x  between Eqs. (12)- (14), we obtain the sixth-order ordinary differential equation 

satisfied with ( )u x  

6 4 2

1 2 3[D D D ] ( ) 0.C C C u x   
                

(15) 

2 2

5 9 6 8 12 7 10 5 13 8 2 12
1
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( ) ( )
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A A A A A A A A A A b h A
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A A B

   
  

22 2

6 9 12 2 13 2 7 10 5 7 11 7 9 10 5 9 6 8 13 2 7 11
2
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A A A b h A b h A A bA A A A A A A A A A A bh A A
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5 8 12

i
.
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C
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Equation (15) can be factorized as 
2 2 2 2 2 2

1 2 3(D )(D )(D ) ( ) 0k k k u x                    (16) 

Where 2 ( 1,2,3)nk n  are the roots of the following characteristic equation  
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6 4 2

1 2 3 0.k C k C k C   
      

          (17) 

The solution of Eq. (15), which is bounded as x   , is given by 
3

1

( ) ,ik x

i

i

u x N e





 

               (18) 

3

1

1

( ) ,ik x

i i
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v x H N e
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1
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                                                                                                                                           (20)

 
 

Where ( 1,2,3)iN i   are parameters.  
2 2 2
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Substituting from Eq. (7) and (11) in Eq. (1), then using Eqs. (18) - (20), we obtain 
3

3

1

,ik x
xx i i

i

H N e 



 ,
                

(21) 

3
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1

,ik x
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                                                                                                                                             (22) 

3

5

1

.ik x
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i
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where  1 1 1 7 2 1 4 1 7 2
3 42 2 2 2 2 2

i ( 2 ) i ( 2 )
, ,

[1 ( )] [1 ( )]

i i T i i i T i
i i

i T i T

A k bB H A H k B bA H A H
H H

k b k b

   

   

       
 

   
  

3 1
5 2 2 2
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i i
i

i T

A b k H
H
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 and  1 2 3.B A A   

The normal mode analysis is, in fact, to look for the solution in the Fourier transformed domain, assuming that 

all the field quantities are sufficiently smooth on the real line such that normal mode analysis of these functions 

exists. 

IV. THE BOUNDARY CONDITIONS OF THE PROBLEM 

           We consider an inclined load 
0f  acting in the direction that makes an angle   with the direction of y   

axis as Othman et al. (2018b). 

i i i i

1 0 2 00, ( cos ) , ( sin ) .by mt by mt by mt by mt

xx xyF e f e F e f e
x


      

        


                                      (24) 

By inserting Eqs. (20)- (23) into Eq. (24), we have 
3 3 3

2 3 0 5 0

1 1 1

0, cos , sin .i i i i i i i

i i i

k H N H N f H N f 
  

                                                                           (25) 

Solving the above system of equations (25), we obtain a system of three equations. After applying the inverse 

matrix method, we have the values of the three constants. Hence, we obtain the expressions of displacements, 

temperature distribution, and the stress components: 
1

1 1 21 2 22 3 23

2 31 32 33 0

3 51 52 53 0

0

cos .

sin

N k H k H k H

N H H H f

N H H H f






     
     

      
          

                                                                                                 

(26) 

V. NUMERICAL RESULTS 

We now show numerical findings for some physical constants to illustrate the theoretical conclusions 

obtained in the preceding section in the context of a dual-phase-lag model (DPL)  

0.8,  0.9,q  0.99,   0 0.9,f  45,  * -1 -1386w.m .K ,k   0 293K,T   -1 -1383.1J.kg .K ,EC   
9 29.76 10 N.m ,   9 22 10 N.m ,   10 22.86 10 N.m ,T

  10 23.45 10 N.m ,L
   -1

0 1.96s ,   
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10 23.86 10 N.m ,    4 -13.78 10 K ,T
   -1

0 1.97s ,   -1

0 1.98s ,   -1

1 1.93s ,   -1

2 1.95s ,    
1

0 1.97s ,   -37800kg.m ,   0 ,m m i   0 0.5,m    0.7,   0.38,b   = -1.5,y  0.2s.t   

          Shown graphically in figures 1-4 are the displacement component v , the thermal temperature  , and the 

stress components xx  and xy  in the case of three different values of the nonlocal parameter 

( 0.99, 0.7, 0)  at 0( 45 )  . Figure 1 shows the distributions of the displacement component v in the case of

( 0.99, 0.7, 0)   and in the context of the DPL model. The displacement component v always begins from 

positive values and decreases in the range 0 6x  , then converges to zero for 6x  . Figure 2 exhibits that 

the distribution of   begins from positive values and decreases in the rang 0 6x   then converge to zero. It 

noticed that the distribution of   decreases with the increase of the nonlocal parameter. Figures 3 and 4 show 

that the distribution of the stress components xx  and xy  begin from a negative value and satisfy the 

boundary conditions at 0x  . xx  and xy increases in the range 0 6x  , then converge to zero with 

increasing of the distance x  at 6x   in the context of the DPL model.  

          Figures 5-8 show the distribution of , , xxv    and xy  for three values of  ( 95, 70, 45)  , in the 

context of the DPL model. Figure 5 shows that the displacement component v  begins from positive values and 

decreases in the range 0 6x   for ( 95, 70, 45)  . Figure 6 shows the variation of the thermal temperature 

  in the case of ( 95, 75, 45)  ,   decreases in the rang 0 6x  , then converge to zero. Also, it 

observed that   increases with the increase of  . Figure 7 shows that xx  increases in the range 0 6x  , 

then go to zero with increasing of the distance x  at 6x  . It was noticed that the distribution of xx  decreases 

with the increase of  . Figure 8 displays that the variations of the stress component xy  begin from a negative 

value and obey the boundary conditions in Eq. (23). It starts from negative value and reaches the maximum 

value in the range 0 6x  , then converge to zero at 6x  . 

          Figures 9 and 10 display the 3D surface curves for the stress components within the framework of the 

DPL model. Different figures can be used to examine how different variables affect the vertical component of 

displacement. During wave propagation, all physical quantities are in motion; hence the vertical displacement 

has a significant impact on the curves that are produced. 

VI. CONCLUION 

The theoretical analysis and numerical calculations covered above enable us to reach the following 

important conclusions: 

1) With an increase in distance x, all physical quantities' values go to zero. 

2) The boundary conditions are met by all physical quantities. 

3) The inclined load plays a significant role in the distribution of all the physical quantities. 

4) Local parameter has a strong influence on the variation of physical quantities. 

5) Analytical solutions based upon normal mode analysis for the thermoelastic problem in solids have 

been developed and utilized. 
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Figure 1 the displacement component v for different values of  . 

 
Figure 2 the thermal temperature component   for different values of  . 
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Figure 3 the stress component 
xx

  for different values of  . 

 
Figure 4 the stress component xy  for different values of  . 

 
Figure 5 the displacement component v  for different values of  . 
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Figure 6 the thermal temperature component   for different values of  . 

 
Figure 7 the stress component 

xx
  for different values of  . 

 
Figure 8 the stress component 

xy
  for different values of  . 
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Figure 9 3D distribution of the stress component 
xx

  in the context of DPL model 

 
Figure 10 3D distribution of the stress component 

xy
  in the context of DPL model 


