Effect of an inclined load on a nonlocal fiber-reinforced visco-thermoelastic solid via a dual-phase-lag model

Samia M. Said 1*, Mohamed I.A. Othman 1, Esraa M. Gamal 1

1 Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt.

Corresponding author: samia_said59@yahoo.com

ABSTRACT: In the present work, the effect of local and inclined loads on plane waves in a fiber-reinforced visco-thermoelastic solid will be investigated in the context of the dual-phase-lag model. The problem is solved numerically by the method of normal mode analysis. Numerical results for thermal temperature, displacement components, and stress are plotted and analyzed. Graphical results show that the effects of the angle of inclination and the nonlocal parameter are evident. Variations in these quantities are plotted in the context of the dual-phase-lag model with isolated boundaries to show the effects of nonlocal parameters and angle of inclination on wave propagation in the fiber-reinforced visco-thermoelastic solid. Compute the physical fields with suitable boundary conditions and perform numerical calculations using MATLAB programming. It was found that the inclined load plays a significant role in the distribution of all the physical quantities. The local parameter has a strong influence on the variation of all the physical quantities. The boundary conditions are met by all physical quantities.

KEYWORDS: dual-phase lag-model, nonlocal parameter, fiber-reinforced, visco-thermoelastic, inclined load.

I. INTRODUCTION

In 1972, Eringen (1972a) proposed the nonlocal continuum theory. The nonlocal elasticity theory, which provides meaning for small-scale effects, is established, along with the theory of nonlocal strain gradients, strain gradients, surface elasticity, and modified corresponding stress theories. Zenkour and Abouelregal (2016) discussed the influence of thermo-sensitive nanobeams using the thermoelasticity theory of the nonlocal solid with thermal relaxation time. Rotation’s impact on a nonlocal, thermoelastic porous medium with a memory-dependent derivative was investigated by Said et al. (2022a). The nonlocal thermoelastic problem’s analytical solutions were presented by Abbas et al. (2022). The nonlocal thermoelastic theory has been explained by many authors, such as Zhu et al. (2017), Sarkar et al. (2020a, 2020b), and Said et al. (2024).

The Kelvin-Voigt model is one of the most commonly used macroscopic models to describe the viscoelastic behaviour of materials. This model represents the delayed elastic response under load, where the deformation is time-varying but recoverable. Koltunov (1976) provided critical experimental results for determining the mechanical properties of viscoelastic materials. Said (2022) studied the effect of gravity on viscoelastic micro solids with voids and temperature. Gupta (2013) studied wave propagation in a viscoelastic transversely isotropic medium. Othman et al. (2002, 2017, 2018a), Said et al. (2022b), and Khoeini et al. (2023) discussed different kinds of thermo-viscoelastic problems.

Due to their exceptional qualities, fiber-reinforced polymers are utilized in many different industries. For the past few decades, fiber-reinforced materials’ stress-deformation analysis has been a significant area of study in solid mechanics. In viscous, anisotropic, fiber-reinforced thermal media, Bayones and Hussien (2017) studied the propagation of Rayleigh waves under the impact of rotation. The effect of an inclined load on a functionally graded, temperature-dependent thermoelastic material was analyzed by Barak et
II. FORMULATION OF THE PROBLEM

We consider a nonlocal fiber-reinforced visco-thermoelastic anisotropic medium in a half-space \((x \geq 0)\). Plane strain in the \(xy\)-plane with the displacement vector \(u = (u,v,0)\), \(u = u(x,y,t), v = v(x,y,t)\). Suppose that an inclined line load \(f_0\) per unit length is acting on the \(z\)-axis and its inclination to \(x\)-axis is \(\phi\).

The constitutive equations are as in Belfield et al. (1983), Said (2020), and Eringen (1974).

\((1-\varepsilon^2\nabla^2)\sigma_{ij} = \lambda' e_{ij} \delta_{ij} + 2\mu_T e_{ij} + \alpha' (a_i a_j e_{ij} \delta_{ij} + a_i a_j e_{ij}) + 2(\mu_T - \mu_r)(a_i a_j e_{ij} + a_j a_i e_{ij}) - \gamma' \theta \delta_{ij}

+ \beta' a_i a_j a_i a_j e_{ij}, \quad (1)

The parameters \(\lambda', \alpha, \mu_r^*, \mu_T^*, \beta^*\) and \(\gamma^*\) are defined as

\[\lambda^* = \lambda(1 + \lambda_0 \frac{\partial}{\partial t}), \quad \alpha^* = (1 + \alpha_0 \frac{\partial}{\partial t}), \quad \mu^* = \mu_T(1 + \alpha_1 \frac{\partial}{\partial t}), \quad \mu^* = \mu_T(1 + \alpha_2 \frac{\partial}{\partial t}), \quad \beta^* = \beta(1 + \lambda_0 \frac{\partial}{\partial t}), \]

\[\gamma^* = \gamma(1 + \gamma_0 \frac{\partial}{\partial t}). \quad (2) \]

where, \(\varepsilon = a_i e_0\) is the elastic nonlocal parameter having a dimension of length, \(a_i, e_0\) respectively, are an internal characteristic length and a material constant, \(\sigma_{ij}\) are the components of stress, \(e_{ij}\) are the components of strain, \(e_{kk}\) is the dilatation, \(\lambda, \mu\) are elastic constants, \([\text{see Eringen et al. (1972b, 1972c) for details}]

\(\alpha, \beta, (\mu_T - \mu_r)\) are reinforcement parameters, \(\alpha_0, \alpha_1, \alpha_2, \beta_0, \gamma_0\) are the viscoelastic parameters, \(\alpha_T\) is the thermal expansion coefficient, \(\theta = T - T_0\) where \(T\) is the temperature above the reference temperature \(T_0\), \(\delta_{ij}\) is the Kronecker’s delta, and \(a = (1,0,0)\) is fiber-direction. \(a = (a_1, a_2, a_3), a^2 + a_1^2 + a_2^2 = 1\).

The equations of motion in the absence of body force

\[\sigma_{\rho,j} = \rho \ddot{\epsilon_j} \quad (3) \]

The heat conduction equation in the context of dual-phase-lag model in the form

\[k'(1 + \tau_\phi \frac{\partial}{\partial t})\nabla^2 T = (1 + \tau_\phi \frac{\partial}{\partial t})(\rho C_T \ddot{T} + \gamma^* T_0 \dot{\epsilon}). \quad (4) \]

Where \(k'\) is the coefficient of thermal conductivity, \(C_T\) is the specific heat at constant strain, \(\tau_\phi\) is the phase-lag of the temperature gradient, \(\tau_\phi\) is the phase-lag of heat flux, and \(\rho\) is the mass density.

Substituting (1) into (3), we get

\[(1-\varepsilon^2\nabla^2)\rho \ddot{u} = A_1 \ddot{u} + A_2 \ddot{v} + A_3 \ddot{w} + A_4 \ddot{u} - \gamma(1 + \gamma_0 \frac{\partial}{\partial t}) \frac{\partial T}{\partial t} \quad \text{in equation } (5) \]

\[(1-\varepsilon^2\nabla^2)\rho \ddot{v} = A_1 \ddot{u} + A_2 \ddot{v} + A_3 \ddot{w} + A_4 \ddot{v} - \gamma(1 + \gamma_0 \frac{\partial}{\partial t}) \frac{\partial T}{\partial t} \quad \text{in equation } (6) \]

where \(A_1 = (\lambda' - 2\mu_T^* + 4\mu_r^* + 2\alpha^* + \beta^*), A_2 = \lambda' + \alpha^* + \mu_T^*, A_3 = \mu^*_r, A_4 = \lambda' + 2\mu_r^*\).

Consider the following non-dimensional variables:
We solve the problem of a nonlocal fiber-reinforced thermoelastic medium by using normal mode analysis as follows:

\[(u, v, \theta, \sigma_y)(x, y, t) = (\tilde{u}, \tilde{v}, \tilde{\theta}, \tilde{\sigma_y})(x) e^{i\omega y - \omega t}. \]

Where \(b \) is the wave number in the \(y \)-direction, \(m \) is the complex constant, \(\omega = \sqrt{-1} \), and \(\tilde{u}, \tilde{v}, \tilde{\theta}, \tilde{\sigma_y} \) are the amplitudes of the field quantities.

Using Eq. (11) in Eqs. (8)- (10), we get

\[(A_1 D^2 - A_0) \tilde{u} + (ib\bar{h}_1 D) \tilde{v} - A_1 \tilde{\theta} = 0, \]

\[(ib\bar{h}_2 D) \tilde{u} + (A_1 D^2 - A_0) \tilde{v} - A_i \tilde{\theta} = 0, \]

\[A_{00} D \tilde{u} + A_{11} \tilde{v} + (A_{12} D^2 + A_{13}) \tilde{\theta} = 0. \]

where

\[A_1 = \frac{\lambda (1 - \lambda m) - 2\mu_1 (1 - \alpha_1 m) + 4\mu_2 (1 - \alpha_2 m) + 2\alpha (1 - \alpha_0 m) + \beta (1 - \beta m)}{\rho c_{0}^{2}}, \]

\[A_2 = \frac{\lambda (1 - \lambda m) + \alpha (1 - \alpha_0 m)}{\rho c_{0}^{2}}, \]

\[A_3 = \frac{\lambda_1 (1 - \lambda m) + 2\mu_2 (1 - \alpha_2 m)}{\rho c_{0}^{2}}, \]

\[A_4 = \frac{\lambda_1 (1 - \lambda m) + 2\mu_2 (1 - \alpha_2 m)}{\rho c_{0}^{2}}. \]

Eliminating \(\tilde{v}(x) \) and \(\tilde{\theta}(x) \) between Eqs. (12)- (14), we obtain the sixth-order ordinary differential equation satisfied with \(\tilde{u}(x) \)

\[[D^6 - C_1 D^4 + C_2 D^2 - C_3] \tilde{u}(x) = 0. \]

Equation (15) can be factorized as

\[(D^2 - k_u^2)(D^2 - k_v^2)(D^2 - k_z^2) \tilde{u}(x) = 0 \]

Where \(k_u^2, k_v^2, k_z^2 \) are the roots of the following characteristic equation.
\[k^6 - C_1k^4 + C_2k^2 - C_3 = 0. \]

The solution of Eq. (15), which is bounded as \(x \to \infty \), is given by

\[\tilde{u}(x) = \sum_{i=1}^{3} N_i e^{-k_i x}, \]

\[\tilde{v}(x) = \sum_{i=1}^{3} H_{ii} N_i e^{-k_i x}, \]

\[\tilde{\vartheta}(x) = \sum_{i=1}^{3} H_{3i} N_i e^{-k_i x}. \]

Where \(N_i (i = 1, 2, 3) \) are parameters. \(H_{ii} = \frac{ib(\lambda_0 + \lambda k_i^2)}{\lambda_0 k_i b^2 + \gamma k_i^2 - \alpha k_i^2}, \quad H_{3i} = \frac{ib \lambda k_i^2 H_{3i}}{\lambda_0 k_i b^2 + \gamma k_i^2 - \alpha k_i^2}. \)

Substituting from Eq. (7) and (11) in Eq. (1), then using Eqs. (18) - (20), we obtain

\[\sigma_{xx} = \sum_{i=1}^{3} H_{ii} N_i e^{-k_i x}, \]

\[\sigma_{yy} = \sum_{i=1}^{3} H_{ii} N_i e^{-k_i x}, \]

\[\sigma_{xy} = \sum_{i=1}^{3} H_{3i} N_i e^{-k_i x}, \]

where \(H_{ii} = \frac{\lambda_0 k_i + ib \lambda \lambda_0 H_{ii} - (\lambda_2 + 2\mu_0) A_0 H_{ii}}{[1 - c^2(k_i^2 - b^2)]\mu_0}, \quad H_{3i} = \frac{-k_i \lambda \lambda_0 H_{3i} - (\lambda_2 + 2\mu_0) A_0 H_{3i}}{[1 - c^2(k_i^2 - b^2)]\mu_0}. \)

The normal mode analysis is, in fact, to look for the solution in the Fourier transformed domain, assuming that all the field quantities are sufficiently smooth on the real line such that normal mode analysis of these functions exists.

IV. THE BOUNDARY CONDITIONS OF THE PROBLEM

We consider an inclined load \(f_0 \) acting in the direction that makes an angle \(\phi \) with the direction of \(y - \)axis as Othman et al. (2018b).

\[\frac{\partial \theta}{\partial x} = 0, \quad \sigma_{xx} = -F_x e^{by-\mu t} = -(f_0 \cos \phi)e^{by-\mu t}, \quad \sigma_{xy} = -F_y e^{by-\mu t} = -(f_0 \sin \phi)e^{by-\mu t}. \]

By inserting Eqs. (20)- (23) into Eq. (24), we have

\[\sum_{i=1}^{3} k_i H_{ii} N_i = 0, \quad \sum_{i=1}^{3} H_{ii} N_i = -f_0 \cos \phi, \quad \sum_{i=1}^{3} H_{3i} N_i = -f_0 \sin \phi. \]

Solving the above system of equations (25), we obtain a system of three equations. After applying the inverse matrix method, we have the values of the three constants. Hence, we obtain the expressions of displacements, temperature distribution, and the stress components:

\[\begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix} = \begin{pmatrix} k_{11} H_{21} & k_{12} H_{22} & k_{13} H_{23} \\ H_{31} & H_{32} & H_{33} \\ H_{51} & H_{52} & H_{53} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ -f_0 \cos \phi \\ -f_0 \sin \phi \end{pmatrix}. \]

V. NUMERICAL RESULTS

We now show numerical findings for some physical constants to illustrate the theoretical conclusions obtained in the preceding section in the context of a dual-phase-lag model (DPL). \(\tau_0 = 0.8, \quad \tau_q = 0.9, \quad \varepsilon = 0.99, \quad f_0 = 0.9, \quad \phi = 45, \quad k' = 386 \text{ W.m}^{-1} \text{K}^{-1}, \quad T_0 = 293 \text{K}, \quad C_k = 383.1 \text{J.kg}^{-1} \text{K}^{-1}, \quad \lambda = 9.76 \times 10^5 \text{ N.m}^{-2}, \quad \beta = 2 \times 10^3 \text{ N.m}^{-2}, \quad \mu_\varepsilon = 2.86 \times 10^6 \text{ N.m}^{-2}, \quad \mu_\varepsilon = 3.45 \times 10^6 \text{ N.m}^{-2}, \quad \beta_0 = 1.96 \text{s}^{-1}. \)
\[\mu = 3.86 \times 10^{10} \text{ N.m}^{-2}, \quad \alpha_r = 3.78 \times 10^{-4} \text{ K}^{-1}, \quad \lambda_0 = 1.97 \text{ s}^{-1}, \quad \alpha_0 = 1.98 \text{ s}^{-1}, \quad \alpha_1 = 1.93 \text{ s}^{-1}, \quad \alpha_2 = 1.95 \text{ s}^{-1}, \quad \gamma_0 = 1.97 \text{ s}^{-1}, \quad \rho = 7800 \text{ kg.m}^{-3}. \]

Theoretical solutions are presented in Figures 1-4 and numerical results are obtained. The following conclusions are drawn:

1. With an increase in distance \(x \), all physical quantities' values go to zero.
2. The boundary conditions are met by all physical quantities.
3. The inclined load plays a significant role in the distribution of all the physical quantities.
4. Local parameter has a strong influence on the variation of physical quantities.
5. Analytical solutions based upon normal mode analysis for the thermoelastic problem in solids have been developed and utilized.

REFERENCES

![Figure 1](https://bfszu.journals.ekb.eg/journal)

Figure 1 the displacement component v for different values of ϵ.

![Figure 2](https://bfszu.journals.ekb.eg/journal)

Figure 2 the thermal temperature component θ for different values of ϵ.

Figure 3 the stress component σ_{xx} for different values of ε.

Figure 4 the stress component σ_{xy} for different values of ε.

Figure 5 the displacement component v for different values of ϕ.

https://bfszu.journals.ekb.eg/journal
Figure 6 the thermal temperature component θ for different values of ϕ.

Figure 7 the stress component σ_{xx} for different values of ϕ.

Figure 8 the stress component σ_{xy} for different values of ϕ.
Figure 9 3D distribution of the stress component σ_{xx} in the context of DPL model.

Figure 10 3D distribution of the stress component σ_{xy} in the context of DPL model.