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ABSTRACT 

 

The aim of this paper is to focus on two new classes of rings called right 

G-semilocal and right N-semilocal. These classes are a generalization of the 

class of semilocal rings. We also study the transfer of right G-semilocality 

and right N-semilocality from a ring R to its normalizing extension S and vice 

versa. 

 

 

1. Introduction 

Throughout this paper, let S be a finite normalizing extension of a ring R, that 

is S is finitely generated as an R-module by elements x1, x2, … , xn of S with 

Rxi = xiR for i = 1,2, … , n, J(R) and J(S) denote the Jacobson radicals of R 

and S respectively. 

Recall that a ring R is said to be semilocal if R̅ = R/J(R) is an Artinian ring, R 

is said to be semiprimary if R/J(R) is an Artinian and J(R) is nilpotent ideal, R 

is said to be right perfect if R/J(R) is an Artinian and J(R) is right T-nipotent, 

a ring R is called right Noetherian if it satisfies the ascending chain condition 

on right ideals and a ring R is called right Goldie if  R has finite right uniform 

dimension and R satisfies the ascending chain condition on right annihilators. 

Several authors studied the transfer of algebraic properties from S to R and 

from R to S. Resco (1981) proved that if S is right Artinian, semiprimary or 

perfect, then so is R. Moreover, Lanski (1980) proved that when S is a right 

Goldie ring, R is also a right Goldie ring. Conversely, if R is a semiprime 

right Goldie ring and S is a prime ring, then S is a right Goldie ring. 

The first obstacle we meet on our way to extend the property of Artinianity of 

the quotient ring R/J(R) to the Noetherian property, or more generally to the 

Goldie one, is that-unlike the Artinian property the latter two are not left-right 
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symmetric. There are examples of semiprimitive right Noetherian (resp., right 

Goldie) rings which are not left Noetherian (resp., left Goldie). 

Throughout this paper, we study the properties of the right N-semilocal (resp., 

G-semilocal) and the left N-semilocal (resp., G-semilocal) is analogously. By 

an N-semilocal (resp., G-semilocal) ring we mean a ring that is both left and 

right N-semilocal (resp., G-semilocal) ring. 

 

2. Right N-semilocal rings 

Definition 2.1. A ring R is called right N-semilocal if R/J(R) is a right 

Noetherian ring. Since the homomorphic image of a right Notherian ring is a 

right Noetherian, and every right Artinian is right Noetherian therefore, we 

conclude that every right Noetherian or semilocal ring is right N-semilocal. 

But the following example illustrates that the converse is not true. 

Example 2.2. Consider the ring R of upper triangular 2 × 2 metrices 

(
ℤ ℚ
0 ℤ

) = R. Then R is neither left nor right Noetherian, since R has the 

infinite ascending chains I1 ⊂ I2 ⊂ ⋯ ⊂ Ii ⊂ ⋯ and J1 ⊂ J2 ⊂ ⋯ ⊂ Ji ⊂ ⋯ of 

left and right ideals in R respectively, where Ii = {(
ℤ Ti

0 0
)}, Ji = {(

0 Ti

0 ℤ
)} 

and Ti = Qpi = {
n

pi
: n ∈ ℤ, p is a fixed prime number}. However, J(R) =

{(
0 ℚ
0 0

)} is a nilpotent ideal, where J2(R) = 0 and R/J(R) ≅ ℤ ⊕ ℤ. Then 

R/J(R) is a commutative Noetherian ring, but not Artinian, hence R is N-

semilocal which is not semilocal. Moreover, R is neither left nor right 

Noetherian. 

 

We need the following two results. 

Theorem 2.3. (Mcconnell and Robson,1987, Corollary 10.1.11). S is right 

Noetherian if and only if R is right Noetherian.  

Theorem 2.4. (Fahmy et al., 2012, Lemma 2.1). Let S be a finite normalizing 

extension of R. Then S/J(S) is a finite normalizing extension of R/J(R) whose 

normal generators are x̅i = xi + J(S).  
Now we prove that the right N-semilocality transfers from R to S and vice 

versa. 

Theorem 2.5. Let S be a finite normalizing extension of R. Then S is a right 

N-semilocal ring if and only if R is a right N-semilocal ring.    

Proof. S is a right N-semilocal ring means that S̅ = S/J(S) is a right 

Noetherian ring. By Theorem 2.4 S̅ is a finite normalizing extension of R̅ =
R/J(R). Therefore, by Theorem 2.3, S̅  is a right Noetherian ring if and only if 

R̅ is. 
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Definition 2.6. A ring R is called right N-right perfect if R/J(R) is right 

Noetherian and J(R) is right T-nilpotent ideal. 

In Example 2.2, we have seen that the Jacobson radical is a nilpotent ideal, 

hence  J(R) is right and left T-nilpotent. Therefore Example 2.2 services as an 

N-semiprimary ring and as an N-right (or left) perfect ring. 

Proposition 2.7. If S is right N-right perfect, then so is R. 

Proof. Since J(R) = J(s) ∩ R the right T-nilpotency of J(S) implies that J(R) 

is right T-nilpotent, and the fact that S/J(S) is right Noetherian implies that 

R/J(R) is right Noetherian, hence R is right N-right perfect.                                

Definition 2.8. A ring R is called right N-semiprimary if R/J(R) is right 

Noetherian and J(R) is nilpotent ideal. 

The proof of the following proposition is similar to the proof of Proposition 

2.7.  

Proposition 2.9. If S is right N-semiprimary, then so is R. 

 

3. Right G-semilocal rings. 

Definition 3.1. A ring R is called right G-semilocal if R/J(R) is a right Goldie 

ring. 

Since every right Noetherian ring is right Goldie, so it is clear from the 

definitions 2.1 and 3.1 that every right N-semilocal is right G-semilocal. The 

following example shows that the class of right N-semilocal rings is a proper 

subclass of the class of right G-semilocal rings. 

Example 3.2. Let A and B be rings such that BA A is an A-bialgebra and let 

R = T(A, B) be the trivial extension of A over B. T(A, B) can be represented 

as the set of upper triangular matrices {(
a b
0 a

) : a ∈ A, b ∈ B}, then J(R) =

{(
j b
0 j

) ; j ∈ J(A), b ∈ B}   and  R̅ = R/J(R) ≅ {(
a̅ 0
0 a̅

) ; a̅ = a + J(R)} ≅

A̅ = A/J(A).  If we take  A = ℤ[x1, x2, … ], B = ℚ[x1, x2, … ], then R/J(R) ≅
ℤ[x1, x2, … ] which is  Goldie but not Noetherian. Thus R is G-semilocal 

which is not N-semilocal.   

 

The following result is crucial to the sequel. 

Theorem 3.3. (Lanski, 1980, Theorem 2).  Let S be a finite normalizing 

extension of a ring R. If S is right Goldie ring, then R is a right Goldie ring. 

Thus, we conclude the next theorem.        

Theorem 3.4. Let S be a finite normalizing extension of a ring R. If S is a 

right G-semilocal ring, then so is R.     

Proof. Since S̅ = S/J(S) is a right Goldie, and S̅ is a finite normalizing 

extension of R̅ = R/J(R) by Theorem 2.4, thus R̅ is a right Goldie ring by 

Theorem 3.3. Hence R is a right G-semilocal ring.                                   
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Definition 3.5. A ring R is called right G-right perfect if R/J(R) is right 

Goldie and J(R) is right T-nilpotent ideal. 

Proposition 3.6. If S is right G-right perfect, then so is R. 

Proof. Since J(R) = J(s) ∩ R the right T-nilpotency of J(S) implies that J(R) 

is right T-nilpotent, and S/J(S) is right Goldie implies that R/J(R) is right 

Goldie by Theorem 3.4. Thus R is right G-right perfect.  

Proposition 3.7. If S is right G-semiprimary, then so is R. 

Proof. Using the same procedure as in the proof of proposiyion 3.6 and the 

relation J(R) = J(s) ∩ R the result follows.  
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 كلية العلوم جامعة الأزهر  -أ. د. محمد حسين فهمى -
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 الملخص العربى

 

شبه الموضعية الهدف من هذا البحث هو دراسة فصول من الحلقات غير الابدالية التى تعمم الحلقات 

والحلقات المرتبطة بها مثل الحلقات التامة وشبه التامة والحلقات الابتدائية . كما تم دراسة نقل بعض 

 الخصائص من الحلقة الى التوسيع الناظمى لها .

 

 

 

 

 

 

 

 

 

 


