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ABSTRACT : Vibration control can be divided into two main categories : passive control and active control. 

Active control is provided by the negative linear velocity and acceleration feedback controller. The 

vibration of a nonlinear dynamical system is reduced by the Negative linear velocity and acceleration 

feedback controller in the worst resonance case (   ).This system has one degree of freedom, which 

contains the third order of nonlinear terms, as well as an external force.  The response of the nonlinear 

system is determined using the multiple scale perturbation technique. Frequency response equations are 

used to test the stability of the numerical solution. The impacts of different parameters on the vibrating 

system is studied and reported on. Numerically, we investigated the time histories of the system before and 

after using Negative linear velocity acceleration feedback controller using Runge – Kutta of the fourth 

order and studied the response curve with detuning parameter   . Finally, the approximate and 

numerical solutions accord well. 
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I. INTRODUCTION  
 Mechanical and civil constructions' dynamic responses to high-amplitude vibrations are frequently 

destructive and unwanted. The oscillator is the most harmful of these motions. Vibration can occur in any 

mechanical system due to a variety of variables. Material fatigue, structure damage, failure, decrease of system 

performance, and higher noise levels are all common consequences of vibration. These effects are usually most 

noticeable around the system's natural frequencies. In many technological and physical applications, the Duffing 

oscillator is one of the most essential models [1] and [2] it is useful in Electric circuits, plasma oscillations, 

optical stability, and buckling beams all benefit from it. [3] investigated the usefulness of the feedback gain on 

the bifurcation point using a nonlinear time delayed feedback controller to control the vibrations of a Van der 

Pol oscillator. [4] explained the behavior of the ring of coupled Van der Pol oscillators' stable and unstable 

responses numerically. If the stability conditions are not satisfied, the amplitude of the Van der Pol oscillator 

increases, according to[5-7]applying the method of multiple time scale MTSPT of hybrid Van der Pol–Duffing–

Rayleigh oscillator for modelling the lateral walking force on a rigid floor and Investigations on the bifurcation 

of a noisy, quantitative analysis of the nonlinear behavior of the forced and self-excited beam was studied. [8]. 

modulated and displayed the Van der Pol – Duffing – Rayleigh oscillator bifurcation analysis. Suppression of 

vibrations of a forced and self-excited nonlinear beam by using positive position feedback controller PPF.The 

vibrations of the Van der Pol – Duffing – Rayleigh oscillator were restrained using nonlinear integral positive 

position feedback controller NIPPF, Nonlinear integral positive position feedback (NIPPF) was introduced as a 

novel method that combines the advantages of both integral resonant controllers (IRC) and positive position 

feedback controllers (PPF) to control nonlinear systems. Moreover, one of its main advantages is to reduce 

vibrations in a short time as shown in [9]. 
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  The stability of the system is investigated using both frequency response curves and phase-plane trajectories. 

All possible resonance cases are extracted. The effects of different parameters of the system are studied 

numerically as shown in Sayed M. [10]. The vibration of nonlinear coupled Van der Pol oscillators has been 

researched and solved under external and parametric excitations.  examined at the frequency response equations 

for this system's primary resonance case. The study is focused on the stability of the periodic solution and the 

nonlinear behavior of this system as shown in [11]. Modeled as a self-sustained oscillator capable of generating: 

I self-sustained motion; (ii) a lateral periodic force signal; and (iii) a stable limit cycle. The suggested oscillator 

is a modification of the hybrid Van der Pol Duffing Rayleigh oscillator, as presented in [12] by including a 

nonlinear hardening term. To produce both the odd and even harmonics observed in experimentally observed 

force measurements, certain additional nonlinear components and parameters are introduced, as indicated in [13-

14]. 

        The procedure of multiple time scale disruption is used to overcome nonlinear differential equations and 

achieve approximate solutions. Multiple scale approaches are one of the most extensively utilized perturbation 

techniques. In contrast to some other strategies, which only produce the steady state solution, this method 

produces both transient and steady state solutions by [15]. Many types of controllers are used for suppressing 

the vibrations of different non-linear dynamical systems. the vibrations of many vibrating systems [16-18] and 

[19] has been studied. Because of the time delayed and active controls springiness in controlling many vibrating 

systems, many papers used time delay for suppressing the vibrations of non-linear systems. Studied vibrations 

analysis and dynamic responses of a Hybrid Rayleigh-Van der Pol- Duffing oscillator with proportional 

derivative controller (PD) that used to control the vibration of the main system. The goal of using the PD 

controller is to increase the system stability by improving control since it has an ability to predict the future error 

of the framework response. This control method makes stability increased, maximum peak overshoot decreased, 

settling time decreases. This controller is applied to recover the framework transient response [20-21]. 

 Finally, The Negative linear velocity and acceleration feedback controller used to suppress the 

vibration of the main system excited by an external force. To examine the system's time histories before and 

after adopting The Negative linear velocity and acceleration feedback controller, we used Runge – Kutta of the 

fourth order. The approximate solution obtained applying the method of multiple scales up to second 

approximation. The stability of the system investigated at the primary resonance case. The behavior of the 

system without and with The Negative linear velocity and acceleration feedback controller is simulated 

numerically. The influence of some chosen coefficient is illustrated. The settlement between numeric and 

approximate solution is offered. The efficacy of different parameters and behavior of the device was 

demonstrated using the MATLAB program.  

Table (1): list of symbols 

, ,x x x  

Displacement, velocity and acceleration of 

main system respectively.   

  The damping coefficients of main system.   

  The natural frequency of main system.   

F External excitation force amplitude frequency 

of external force.   

( 1,2,3)i i   Nonlinear coefficients of the main system. 

  The gain of control signal  

  Small perturbation parameter   
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II. MATERIALS AND METHODS 

 

1. Closed loop model  

 
Fig. 1. The model of duffing system oscillator 

Kumar (2018), presented the equation of motion of the nonlinear dynamical system by:  
2 3 3 2

1 2 32 cos ( ) ( )C fx x xx x x x f t R t GR t                                                      (1)   

Take scale 
2ˆ ˆ ˆ ˆ, , ,i

i f f G G


    


    .we insert the negative linear velocity and acceleration 

feedback controller which is linked to the main system through a control low. We cheek the controls signal as

, ( )C fR x R t x   so the closed loop of controller system equation is  

2 3 3 2 231 2
ˆˆ ˆ ˆ ˆ ˆ2 cosx x xx x x x f t x Gx
 

    
  

                                                 (2) 

Perturbation techniques 

apply multiple scale method Nayfeh. A. H (1979). we get first order approximate solution for equation (2) in the 

form:  

 
2 3

1 0 1 2 0 1( ; ) ( , ) ( , ) ( )x t x T T x T T O                                                                                                   (3) 

where, the fast scale is 0T  and the slow scale is 1T t . The derivatives are converted as: 

2
2

0 1 0 0 12
..., 2 ..., (j 0,1)j

j

d d
D D D D D D

dt dt T
 


       


                                                       (4)    

Subset equations [3]and [4] into equation [2], then equating the coefficient of same power of  we get the 

following differential equations:                                                                                                                                               

( )O   

2 2

0 1 0D x                                                                                                                                                (5) 

 
2( )O   

 
 2 2 2

0 2 0 1 1 0 1 1 0 1 1 2 0 1

3 2

3 1 0 1 0 1

3ˆ ˆ2 2 ( ) ( )

ˆ ˆ ˆˆ cos( t)

D x D D x D x D x x D x

x f D x GD x

   

 

     

    

                                                   (6)                                                                                                                               

 The general solution of homogenous differential equation (5) takes the following forms: 

0 0

1 0 1 1 1(T ,T ) (T ) (T )
i T i T

x A e A e
 

                                                                                                         (7) 
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From equation (7) into equation (6), we get: 

  0 0 0 0 0

0 1 0 1 0

0

t2 2 2 2

0 2

2 3 2 2

1 2 3

33 3 3 3

1 2 3

ˆ
ˆ ˆ 2 2

2

ˆ ˆ ˆ3 3

ˆ ˆ ˆ( )

i i T i T i T i T

i T i T i T

i T

f
D x e i Ae G Ae i DAe i Ae

i A Ae i A Ae A Ae

i A i A A e CC

   

  



     

    

    


     

  

    

                     (8)           

The particular solutions of equations (8), after eliminating the secular terms take the followings forms: 

1 0 0

3 3 3 3
31 2 3

2 2 2 2

ˆˆ ˆ ˆ

8 2( )

i T i Ti A i A A f
x e e

    

 

  
 

 
                                                              (9)                                                                                     

2. Periodic Solution 

From the second approximation at the worst resonance case   we introduced the detuning parameter to 

examine the stability of the system at the primary resonance case, as the following  

                                                                                                                                                              

(10) 

Appending equation (10) into the secular terms in eq. (8) then the solvability condition takes the form:  

12 2 3 2 2 2

1 2 3

ˆ
ˆ ˆˆ ˆ ˆ2 2 3 3 0

2

i Tf
i DA i A i A A i A A A A i A G A e                                      

(11)                                           

To elucidate the solution of (11) we take A the polar form as: 

 
1 1

a e , a e
2 2

i iA DA ia                                                                                                               

(12) 

where a  the steady state amplitudes of the motion  of the system ,and   are the phases of the motion. Which  

( 1T    ) elucidate (12) into (11) we get the following amplitude – phase modulating equations:   

3 2 3

1 2

ˆ1 3 1 ˆˆ ˆa a sin
8 8 2 2

f
a a a     


                                                                                        

(13) 

3

3

ˆ3 1 ˆˆ a s
8 2 2

f
a Ga co   

 
                                                                                                               

(14)                                                           

Back to the main system parameters, we have the following system of differential equations: 

3 2 3

1 2

1 3 1
a a sin

8 8 2 2

f
a a a     


                                                                                          

(15) 

2

3

3 1
a cos

8 2 2

f
G

a
    

 
                                                                                                           

(16) 

where 
a

a


   the performance of the control law will be evaluated by calculating the equilibrium solutions of 

(15) and (16) examining their stability as a function in the parameters  1 2 3
ˆˆ ˆ ˆ, , , , ,       and f. 

4. Fixed point solution 

The steady-state solution happens when, 


  0
da d

dt dt
so, the steady state solution is given by,                                                             

3 2 3

1 2

1 3 1
sin a a

2 8 8 2

f
a a     


                                                                                                   
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(17)                                                                     
3

3

3 1
cos a

2 8 2

f
a G a   

 
                                                                                                                    

(18)  Squaring then adding both sides of equations (17) and (18) to obtain the following equation: 
2 2 2

3 2 3 3

1 2 3 2

1 3 1 3 1
a a a

8 8 2 8 2 4

f
a a a G a       

 

   
         

   
                                             

(19)                                             Equations (19) is the frequency-response equations that used to describes the 

steady state solutions of the behavior of the system for the practical case i.e.( 0a  ). 

5.  Equilibrium solution of a fixed point  
 

    To determine the stability of the equilibrium solution, the eigenvalues of the Jacobian matrix on the right-

hand side of equations (15) and (16) were analyzed. If the real part of each eigenvalue is negative, the 

corresponding equilibrium solution is asymptotically stable. If the real component of any eigenvalue is 

positive, the corresponding equilibrium solution is unstable. While moving to improve the stability of the 

steady state solution. We must investigate the behavior of tiny deviations from steady-state solutions in order 

to determine the stability requirements. As a result, we assume 

1 0 1 0

1 1

a=a +a , = +

a=a ,       =

  

 
                                                                                                                                        

(20) 

where 0 0,a  satisfy (15) and (16) and 1 1,a   are perturbations which are assumed to be small compared to

0 0,a  . Substituting equation (20) into equations (15)–(16), expanding for small 1 1,a  , and keeping linear 

terms in 1 1,a  , we get 

2 2 2

1 1 0 2 0 1 0 1

3 9 1
 a = a a a + cos

8 8 2 2

f
      



   
      
   

                                                                      

(21)                                                                                                  

3
1 0 1 0 1

0 0 0

9 1
= a sin( )

8 2 2

f
a G

a a a


   

 

   
     

   
                                                                                    

(22) 

For the above system’s solution be stable, the real parts of its Eigen-values must be negative. 

III. RESULTS AND DISCUSSION 
 Numerical Consequence 

To examine the results of the system numerically, we used "Ode 45" package in MATLAB program. 

Also, we investigate the stability of the main system using the multiple scale method and the influence of 

different parameters on the behavior of controlled system was illustrated. We introduced a comparison between 

the approximate solution which obtained from the multiple scale method and the numerical one. We used the 

following parameters values  

1 2 3=1; =0.1; =0.5; =0.5; =0.05;e=1;f=0.08; =0.5;G=1.2;       

Time History 
We showed the time history of uncontrolled system at primary resonance in Figure 2. We can see from 

this figure that the system's response is approximately 0.36. The vibrations were decreased by 94.7. This means 

that the efficiency of the negative linear velocity and acceleration feedback controller Ea is about 8 (Ea= the 

amplitude of uncontrolled system/the amplitude of controlled system). after utilizing the negative linear velocity 

and acceleration feedback controller, and the amplitude of the vibrating system was reduced from about 0.36 to 

about 0.05. Figure 3 illustrates the influence of the main system parameters (damping coefficient   and 

nonlinearities coefficient 1 2 3, ,   ). The amplitude of the main system is monotonic decreasing in the 

damping coefficient   and nonlinearities coefficient 1 2 3, ,   , as shown in this figure3. More increasing of 

the damping coefficient leads to saturation phenomena. the system might be needing a control. After using 

negative linear velocity and acceleration feedback controller, the main system amplitude reduced to reach 0.05 

as represented on Fig4. 
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Figure 2: The time history and phase plane of uncontrolled system at primary 

resonance case. 

  

 
 

Figure 3: The influence of the parameters of the main system without control. 
 



Bulletin  of Faculty of Science ,Zagazig University (BFSZU) 2023 
 

 
h t t p s : / / b f s z u . j o u r n a l s . e k b . e g / j o u r n a l  Page 29 

Figure 4: The time history and phase plane of controlled system at primary resonance case. 
Response Curves 
 We used the frequency response curves to examine the influence of different parameters on the controlled 

system. The relation between the amplitude of the controlled system a and the detuning parameter   is given 

by equation (19). This equation was simulated as shown in Figure 5. We may determine from this figure that the 

frequency response curve is represented by a red curve at the primary resonance case. such that the solid line 

expresses the stable solution of Eq. (19) while, the dash one expresses the unstable solution of the same 

equation. The behavior of the controlled system increased as the external excitation force f was increased as 

shown in figure 6. the natural frequency   and damping coefficient    increased, the main system's response 

decreased as illustrated in figures  7 and 8. The response of the main system decreased with increasing the 

negative linear velocity coefficient  ,which is advantageous in the performance of the negative linear velocity 

feedback controller in figure 9. The amplitude shift to right for small values of the negative linear acceleration 

feedback coefficient G shown figure10. The Eqns. (21) and (22) solved analytically and presented graphically 

by (———) lines which be in agreement with the numerical solution of Eq. 11as shown in Fig 12. Fig. 13, there 

is a good agreement between the frequency response curves (FRC) which given by the sold line and the 

numerical solution of Eq.1using (RK-4) that marked by green circles.  

 
Figure 5: The FRC of the controlled system. 

 
Figure 6: The external force action of the controlled system. 
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 Figure 7: The effectiveness of damping parameter  . 

  
Figure 8: The influence of the internal frequency  . 

 
Fig. 9: The influence of the negative linear velocity coefficient  . 

 
Fig. 10: The influence of the negative linear acceleration coefficient G. 
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Figure 11: Comparison between the numerical solution (———) and the perturbation 

analysis (——————) for the uncontrolled system. 

 
Figure 12: Comparison between the numerical solution (———) and the perturbation 

analysis (——————) for the controlled system. 

 
Figure 13: Comparison between the FRC Solution and RK-4 Solution 

 

V –CONCLUION 

 In many engineering and physical applications, the system is one of the most important models. The 

vibrations analysis and dynamic responses of system subjected to external excitation force f were investigated. 

For obtaining the approximate solution of the vibrating system, we applied the multiple scales method. We used 

negative linear velocity feedback controller to suppress the vibrations of system, the amplitude of the vibrating 

system was repressed from about 1.2 to about 0.15 and the vibrations were reduced by about 94.7% from its 

value without control and the effectiveness of the negative linear velocity feedback controller Ea is nearly about 

12. From this study, we can note some important results for the influence of the vibrating system's parameter 

such that: 

 The behavior of the controlled system increased with increasing the external excitation force f. 
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 The response of the main system decreased with increasing the natural frequency  . 

 The response of the main system decreased with increasing the negative linear velocity coefficient  . 

 The amplitude shift to right of the negative linear acceleration feedback coefficient G. 

 There is a conformity of FRC solutions with RK-4 solutions. 
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