The ameliorative effect of *Alkanna orientalis* extract against Horned viper venom renal, lipogram and cholinergic toxicity

¹ physiology department, Desert research centre, Cairo, Egypt. 11753
² Zoology department, faculty of science, Zagazig university, Egypt.
³ pharmacognocy department, faculty of pharmacy, Zagazig university, Egypt.

Corresponding author: Nasser_mahmoud55@yahoo.com

ABSTRACT: The present study designed to evaluate the toxicity of *Cerastes cerastes* (Cc) venom on male albino rats and the possible ameliorative role of *Alkanna orientalis* (Ao) extract against venom toxicity. Forty-eight adult male albino rats (180 ± 200 g) divided into 6 groups. Group I injected intraperitonial with physiological saline (100μl). Group II injected intraperitonial with Ao extract (250 mg/kg/BW). Group III injected with 1/10 LD₅₀ of Cc venom (0.435 mg/kg/BW). Group IV injected intraperitonial with Cc venom (0.435 mg/kg/BW) then immediately injected with Ao extract (250 mg/kg/BW). Group V was given Ao extract orally (250 mg/kg/b.wt) then after 2 hours injected with Cc venom (0.435 mg/kg/BW). Group VI was injected with Cc venom (0.435 mg/kg/BW) then was injected immediately with immunoglobulin (300μl). Group III showed a significant increase in serum creatinin, urea, uric acid as well as a significant decrease in serum total cholesterol, triglyceride, HDL-cholesterol, LDL-cholesterol, glucose level, calcium and cholinesterase when compared with control group. As well as, Ao extract when given intraperitonial immediately or orally 2 hours before Cc venom as antidote, it minimizes the changes of previous biochemical parameters. groups IV and V when compared with group VI, it showed that Ao extract considered more effective antidote than antivenom immunoglobulin for Cc venom renal, lipogram and cholinergic toxicity. In conclusion, Ao extract showed a new therapeutic and prophylaxis agents against Cc venom renal, lipogram and cholinergic toxicity.

KEYWORDS: *Cerastes cerastes*; *Alkanna orientalis*; family Boraginaceae; venom toxicity; haematological effect.

I. INTRODUCTION

Snake’s envenomation is a critical public medical health problem [1] resulting in high mortality and morbidity rate [2]. Venomous snakes documented as the most dangerous poisoning animals all over the world and the fatality of its bites depending on the injected venom amount, location of the bite, the size of the victim, the snake species and the time between the bite and the injection of anti-venom [3]. The toxic effects of the venoms result from both protein and non-protein components which have distinct actions [4].

Cerastes cerastes venom was reported to cause local tissue damage, that lead to the extra cellular matrix disruption as well as, the basement membrane disruption that covering the body vessels and blood capillaries [5].

[6] Reported that, the cell membrane permeability changes due to the venom toxicity that resulting in the internal cell content discharge, oxidative stress and it cause an inflammatory response. Therefore, anti-inflammatory and antioxidant drugs may be important in the treatment of snake bite. In addition, the neurological toxic effect of snakebites such as neuromuscular paralysis was documented by [7].
The usage of anti-venom can neutralize the venom as well as, it can prevent further damage but it cannot restore the damage that was already occurred [8]. Therefore, it is seriously to find out new natural or artificial venom inhibitors, which can compete the anti-venom therapy or complement the anti-venom action especially, in the local tissue damage restoring [9]. Glycosaminoglycans, polysaccharides, flavonoids and alkaloids was documented as venom spreading factors inhibitors [10]. Herbs and plants were recorded as pharmacological ingredients source that represent about 25% of the recently used drugs [11]. Because of the low-cost traditional medicinal plants, it is commercially used for diseases treatment especially in low-income population's countries [12].

Boraginaceae family includes several plants that widely distributed in mild and tropical regions and it was classified into 200 genus and 2000 species, most of these family members have important medicinal usage. Some plants of *Boraginaceae* family documented as snakebite antidote such as, *Argusia argentea* extract is effective in *Trimeresurus flavoviridis* bites [13]. Whole the plant of *Carmona retusa* reported as antidote paste for *Dabois russelii* bites [14]. Rosmarinic acid from *cordia verbenacea* extract is effective against *Bothrops jararacussu* bites [15].

Alkanna orientalis and Echium humil, belong to *Boraginaceae* family rich with stearidonic acid (SDA), alpha-linolenic acid (ALA) and gamma-linolenic acid (GLA) in addition to rosmarinic acid (RA). All previous ingredient was reported to be a powerful anti-inflammatory and antioxidant effect so; they can restore the *Cerastes cerastes* venom toxicity [16] and [17].

Rosmarinic was reported as active ingredient of _Alkanna orientalis_ that showed antioxidant, anti-inflammatory and antibacterial effect [18]. As well as, rosmarinic acid able to inhibit the snake venom phospholipases A2 and metalloproteinase from *Cordia verbenacea* and *B. jararaca* [19].

On the same pattern, [20] reported flavonols fractions from aerial parts of _Alkanna orientalis_. Flavanoids are one of the foremost plant components that work against PLA2 and lipooxygenase, they showed anti-allergic, anti-inflammatory and enzyme inhibiting properties. Flavanoid weakly inhibits the group I PLA2 from *Naja naja* and strongly inhibits the group II PLA2 from *Vipera* [21].

II. AND METHODS

II.MATERIALS

Experimental animals

Eighty eight male albino rats, weight range 180–200 gm, obtained from faculty of science animal house, Zagazig University. These rats quarantined 15 days before the experiments carried, settled in plastic cages, fed a standard diet and water, exposed to a 12 h light/dark cycle, and maintained at temperature range 22±2°C. All Institutional and National Guidelines for the care and use of animals were followed.

Cerastes cerastes venom

25 *Cerastes cerastes* vipers obtained from El Kharga (New Valley), settled in cages at in desert research center physiology lab. Vipers were milked by using a rubber into a small beaker, and then the venom was rapidly frozen by using liquid nitrogen until the study start.

Cerastes cerastes venom LD50

LD50 of *Cerastes cerastes* venom was calculated according to the method that described by [22]. 40 adult male albino rats were divided into 5 groups (gp I-V), injected intraperitonial (i.p.) with *Cerastes cerastes* venom with doses (2.0, 3.0, 4.0, 5.0, 6.0) mg/kg/BW for each group, respectively. 24 hours post injection the dead and alive rats in each group were recorded. The calculated LD50 was 4.35 mg / kg/BW.

Alkanna orientalis extraction

Alkanna orientalis extract was prepared according to [23] method for intraperitonial administration. The plant obtained from Saint Katherine, South Sinai, Egypt, where it grow, and then it was left in air for drying away from direct sun heat. Then, we grinded the plant then immersed in 70% ethyl alcohol for 4 days. The extract filtered and concentrated at room temperature. The extract stored at 4°C until using in the study.

Antivenom

We purchased Anti-venom immunoglobulin from VACSERA CO. Agouza .Giza, Egypt.

Animal treatment schedule
Forty eight male albino rats were divided into six groups (n=8/group), as the following:

Group I (control group):
Rats were injected (i.p.) with 100μl of 0.09% physiological saline

Group II (Alkanna orientalis treated group):
Rats were injected (i.p.) with Alkanna orientalis extract (250 mg/kg/BW) dissolved in 100μl distilled water.

Group III (Cerastes cerastes venom treated group):
Rats injected (i.p.) with Cerastes cerastes venom (0.435 mg/kg BW) that represent 1/10 LD 50, dissolved in 100μl of 0.09% physiological saline.

Group IV (Cerastes cerastes venom + Alkanna orientalis extract) group:
rats injected (i.p.) with 1/10 LD 50 Cerastes cerastes venom (0.435mg/kg/BW) dissolved in 100μl of 0.09% physiological saline then, immediately injected (i.p.) with Alkanna orientalis extract (250 mg/kg/BW) dissolved in 100 μl distilled water.

Group V (a prophylaxis group):
Rats were given Alkanna orientalis extract orally (250 mg/kg/BW) then after 2 hours were injected (i.p.) with 1/10 LD 50 Cerastes cerastes venom (0.435 mg/kg BW) dissolved in 100μl of 0.09% physiological saline.

Group VI (Cerastes cerastes venom + antivenom):
Rats were injected (i.p.) with 1/10LD 50 of Cerastes cerastes venom (0.435 mg / kg/BW) dissolved in 100 μl of 0.09 % physiological saline, and then were immediately injected (i.p.) with 300 μl of antivenom immunoglobulin.

Blood sampling
In this study rats were sacrificed 2 hours after Cerastes cerastes venom injection and in group I & II, rats were sacrificed 2 hours after saline and Alkanna orientalis extract injection respectively, and blood samples were collected in sterile tubes without anticoagulant. The serum separated from clotted blood and used for the biochemical parameters determination.

Evaluation of some biochemical parameters
Biochemical parameters carried out by spectrophotometric analyzer (BT-260). Creatinin test measured according to method described by [24]. Serum urea, measured according to [25], Serum uric according to [26]. Serum calcium according to [27]. Cholinesterase level according to [28], glucose according to method described by [29], Serum cholesterol According to method described by [30], serum triglycerides according to method described by [31] and Serum LDL and HDL-cholesterol was determined according to [32].

Statistical analysis
The obtained data were analyzed by the statistical analysis software (SAS–2013 program), for obtaining Mean values ±standard error. Subsequent multiple comparisons between the different groups were analyzed by Duncan’s multiple comparison tests [33], values at (P<0.05) were considered significant [34].

III. RESULTS

Kidney function parameters and cholinesterase
Table (1) illustrate the effect of Cerastes cerastes venom and the ameliorative role of Alkanna orientalis extract and antivenom on some kidney function parameters, calcium and cholinesterase in the different groups. Rats that injected with Cerastes cerastes venom (group III), showed a significant increase (P < 0.001) in level of serum creatinin, urea, uric acid and a significant decrease (P < 0.001) in serum calcium and cholinesterase level as compared with control group (group I). While, Alkanna orientalis extract (group II) did not show any significant effect in all previous parameters when compared with control group.

On the other hand, when Alkanna orientalis was injected (i.p.) immediately after Cerastes cerastes venom or given orally 2 hours before Cerastes cerastes venom as a prophylaxis dose, (groups IV and V, respectively), it was able to ameliorate the renal toxic effect of the venom as well as cholinergic toxicity. In addition, it showed a significant decrease (P < 0.001) in serum level of creatinin, urea, uric acid and a significant increase (P < 0.001) in serum calcium and cholinesterase as compared with venom treated group. On the same pattern, antivenom immunoglobulin showed a
significant ameliorative effect against the venom when given (i.p.) immediately after Cerastes cerastes crude venom injection.

Lipogram parameters and glucose level

Concerning to the effect of *Cerastes cerastes* venom and the ameliorative role of *Alkanna orientalis* extract and antivenom immunoglobulin on lipogram parameters and glucose level. Table (2) showed that, group III has a significant decrease ($P < 0.001$) in total cholesterol, triglyceride, HDL and LDL cholesterol as well as, serum glucose level in comparison with group I. While, *Alkanna orientalis* extract (group II) showed a significant decrease in triglyceride level and did not give any significant effect in the other parameters after 2 hours from (i.p.) injection of it as compared with control group as shown in Table (2). As well as, in groups IV and V *Alkanna orientalis* was able to ameliorate the toxic effect of the venom. It showed a significant increase ($P < 0.001$) in all previous parameters when compared with the venom treated group (group III). On the same pattern, antivenom immunoglobulin showed a significant ameliorative effect against the venom when given (i.p.) immediately after *Cerastes cerastes* crude venom injection. It showed a significant increase ($P < 0.001$) in all previous parameters when compared with the venom treated group (group III), as shown in Table (2).

These results showed that *Alkanna orientalis* extract when given as antidote for *Cerastes cerastes* venom renal, cholinergic and lipogram toxicity was effective hand by hand such as synthesized antibody (anti-venom immunoglobulin) and these results clearly appeared by comparing the findings of groups IV and V with group VI.

Table (1): effect each of Cerastes cerastes venom, Alkanna orientalis and their combination on some kidney functions, calcium and cholinesterase in male albino rats (mean ± SE) (n=8).

<table>
<thead>
<tr>
<th>groups</th>
<th>(mean±SE) of some kidney function parameters, calcim and cholinesterase (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Creatinin mg/dl</td>
</tr>
<tr>
<td>1. Control group</td>
<td>0.78 ± 0.09<sup>b</sup></td>
</tr>
<tr>
<td>2. Ao extract group</td>
<td>0.74 ± 0.08<sup>bc</sup></td>
</tr>
<tr>
<td>3. Cc. venom group</td>
<td>1.41 ± 0.05<sup>a</sup></td>
</tr>
<tr>
<td>4. Cc. venom<sub>1p</sub> + Ao extract<sub>1p</sub> group</td>
<td>0.79 ± 0.08<sup>b</sup></td>
</tr>
<tr>
<td>5. Ao extract<sub>oral then 2h</sub> + Cc. venom<sub>1p</sub> group</td>
<td>0.71 ± 0.07<sup>de</sup></td>
</tr>
<tr>
<td>6. Cc. venom<sub>1p</sub>+Antivenom<sub>1p</sub> group</td>
<td>0.79 ± 0.04<sup>b</sup></td>
</tr>
</tbody>
</table>

Means within the same column in each category carrying different litters are significant at ($P \leq 0.05$).

Where

Cc. Venom ________________ *Cerastes cerastes venom*

Ao extract ________________ *Alkanna orientalis extract*

I.p ________________ *intraperitoneal*
According to the present study, the significant decreasing in calcium level after Cerastes cerastes venom injection is in agreement with [35], as they documented that Phospholipases A2 is the major components of Cerastes cerastes venom and it exhibit neurotoxicity. Also, [40] reported that PLA2 exhibit a presynaptic neurotoxicity.

Concerning to the effect on some kidney function parameter, serum calcium and serum cholinesterase. Our results showed that Alkanna orientalis extract did not cause any significant change in all previous determined parameters when given as a single intraperitonal dose to albino rats as compared with control group. While, 2 hours after Cerastes cerastes venom injection lead to a significant increasing in serum creatinin, urea and uric acid also, a significant decrease in serum cholinesterase and calcium as compared with control group.

On the same pattern, anti-venom and Alkanna orientalis extract when given as antidote for Cerastes cerastes venom toxicity according to the program of treatment, succeed to ameliorate the toxicity of Cerastes cerastes venom on kidney function parameters.

The renal toxicity occurred after Cerastes cerastes venom injection agree with [33], as they documented acute renal failure with vascular lesions and tubular necrosis in renal cortex after different snake bites. In the present study, the elevation in serum uric acid, urea and creatinine levels indicate renal impairment. The increasing of urea and creatinine levels that observed in this study, reflect impairment of renal function [36] and [37]. Also, a similar observation was reported in rats after administration of various viper venoms were reported [38].

The decreasing in serum cholinesterase levels in rats following Cerastes cerastes venom injection is in agreement with [39] as they documented that Phospholipases A2 is the major components of Cerastes cerastes venom and it exhibit neurotoxicity. Also, [40] reported that PLA2 exhibit a presynaptic neurotoxicity.

According to the present study results, the significant decreasing in calcium level after Cerastes cerastes venom injection is in agreement with [41], as they illustrated the effect of sub lethal doses of Cerastes cerastes and Macrovipera mauritanica venom after 1, 3, 6 and 24 hours of envenomation, and the results showed that the venom caused a significant decreasing in calcium level in rabbit.

The protective action of Alkanna orientalis treatment is explicable in terms of their capacity for trapping free radicals and their stabilizing effect on the cytoplasmic membranes, they promotes protein synthesis, helps in regenerating kidney tissues[42]. As well as, Alkanna orientalis considered a powerfull anti-oxidant as it rich with Flavanoids that considered as one of the foremost plant components that work against PLA2, lipoxygenase. The flavonoid was reported as strongly inhibits the group II PLA2 from Vipera [21]. As well as, Alkanna orientalis rich source of rosminaric acid, alpha - linolenic acid (ALA) and gamma- linolenic acid.

Table (2): effect each of Cerastes cerastes venom, Alkanna orientalis and their combination on lipogram and glucose level in male albino rats (mean±SE) (n=8).

<table>
<thead>
<tr>
<th>groups</th>
<th>cholesterol mg/dl</th>
<th>Triglyceride mg/dl</th>
<th>HDL cholesterol mg/dl</th>
<th>LDL cholesterol mg/dl</th>
<th>RBS mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Control group</td>
<td>99.0 ± 2.5a</td>
<td>80.1 ± 5.2a</td>
<td>30.2 ± 1.1b</td>
<td>56.3 ± 2.1c</td>
<td>75.8 ± 2.3a</td>
</tr>
<tr>
<td>2. Ao extract group</td>
<td>98.2 ± 3.1a</td>
<td>63.1 ± 4.3ad</td>
<td>30.1 ± 0.9b</td>
<td>55.3 ± 1.6c</td>
<td>76.6± 3.1a</td>
</tr>
<tr>
<td>3. Cc.venom group</td>
<td>80.5 ± 4.2c</td>
<td>66.5 ± 3.2c</td>
<td>23.1 ± 1.3e</td>
<td>50.0 ± 1.4d</td>
<td>49.8± 1.8b</td>
</tr>
<tr>
<td>4. Cc.venom _i_p + Ao extract _i_p group</td>
<td>90.8 ± 5.1b</td>
<td>58.0 ± 4.5d</td>
<td>33.7 ± 1.4b</td>
<td>67.2 ± 1.7a</td>
<td>75.7± 3.5a</td>
</tr>
<tr>
<td>5. Ao extract oral then 2h + Cc.venom _i_p group</td>
<td>89.6± 2.1b</td>
<td>75.5 ± 3.6b</td>
<td>32.5 ± 1.2b</td>
<td>59.0 ± 1.8bc</td>
<td>77.6± 0.9a</td>
</tr>
<tr>
<td>6. Cc.venom _i_p+Antivenom _i_p group</td>
<td>77.8 ± 3.6e</td>
<td>77.0 ± 4.6a</td>
<td>39.5 ± 1.4a</td>
<td>64.5 ± 1.8ab</td>
<td>42.2± 1.6e</td>
</tr>
</tbody>
</table>

Means within the same column in each category carrying different litters are significant at (P ≤ 0.05).

Where

C.c venom __________________ Cerastes cerastes venom
Ao extract __________________ Alkanna orientalis extract
I.p ______________________ intraperitonial

IV. DISCUSSION

Concerning to the effect on some kidney function parameter, serum calcium and serum cholinesterase. Our results showed that Alkanna orientalis extract did not cause any significant change in all previous determined parameters when given as a single intraperitonal dose to albino rats as compared with control group.

On the same pattern, anti-venom and Alkanna orientalis extract when given as antidote for Cerastes cerastes venom toxicity according to the program of treatment, succeed to ameliorate the toxicity of Cerastes cerastes venom on kidney function parameters.
(GLA) that acts as powerful anti-inflammatory and anti-oxidant against Cerastes cerastes venom renal toxicity [17] and [19].

The protective effect of Alkanna orientalis extract against the significant decreasing in cholinesterase and the cholinergic effect of cerastes cerastes venom is in full agreement with [43] as they described the protective effect of Echium humile extract (family: Boraginaceae) against malathion neurotoxicity and against the significant decreasing in cholinesterase as a result of malathion cholinergic toxicity.

As well as, Alkanna orientalis rich with flavonoids that considered as one of the most plant ingredients that work against PLA2, as flavonoid is strongly inhibits the group II PLA2 from Vipera that responsible for the major Cerastes cerastes venom toxicity so, it able to antagonize the hazardous neuotoxic effect of the crude venom as well as Cerastes cerastes effect on serum calcium level [21].

Concerning to the effect on glucose and lipogram parameters (Total cholesterol, triglyceride, HDL-cholesterol and LDL-cholesterol) the obtained results revealed that, Alkanna orientalis extract when given as a single intraperitoneal dose did not cause any significant change in all determined lipogram parameters and glucose with the exception of triglyceride showed a significant decreasing as compared with control group. While, Cerastes cerastes venom according to the same program of treatment caused a significant decreasing in all lipogram parameters, Total cholesterol, triglyceride, HDL-cholesterol and LDL-cholesterol as well as, glucose level when compared with control group.

On the other hand, Alkanna orientalis extract and antivenom when given as antidote to Cerastes cerastes venom according to the program of treatment, succeed to modulate the Cerastes cerastes venom toxic effect and returned the lipogram and glucose parameter to about the normal value.

The significant hypoglycemic effect that observed after 2 hours from injection of the venom is in agreement with [44], [45] and [46], as the reduction of blood glucose level reflects a disturbance in carbohydrate metabolism, which could be referred to insulin-releasing effect of some venom components. As well as, the decreasing in serum cholesterol, triglycerides, HDL-cholesterol and LDL-cholesterol levels in rats following Cerastes cerastes venom injection, these findings are in agreement with the other investigators [47] and [45]. They reported that, a significant decreasing in serum cholesterol and triglyceride levels noted in laboratory animals that injected with snake venoms, suggested that the snake venom able to mobilize lipids from adipose tissues then splitting by lipolytic enzymes, that lead to free fatty acids liberation.

We suggested that Cerastes cerastes venom toxicity responsible for production of oxidative stress, which is the key contributor in hepatic injury and it known to produce reactive oxygen species (ROS) that is responsible for significant change in lipid profile and hepatic dysfunction.

The ameliorative effect of Alkanna orientalis that observed in this study against the hypoglycemic and hypolipemic effect of Cerastes cerastes venom explained by that, Alkanna orientalis rich with alpha-linolenic acid (ALA), gamma- linolenic acid (GLA) and rosmarinic acid that acts as antioxidant and anti inflammatory against Cerastes cerastes venom toxicity [17] and [19].

ALA and GLA, act as anti-inflammatory and lipid lowering potential, it also cause vasodilation. In addition, GLA are important constituents of membrane phospholipids, including the mitochondrial membrane, where they enhance the integrity and the fluidity of the membrane [48]. As well as, dietary supplementation with GLA alone has yielded variable results on circulating lipid levels [49] and [50].

As well as, Alkanna orientalis considered a powerfull antioxidant as it rich with Flavanoids that considered as one of the foremost plant components that work against PLA2, lipoxygenase. They possess anti-inflammatory, anti-hypertensive, hypocholesterolemic, antiallergic, and enzyme inhibiting properties. The flavonoid strongly inhibits the group II PLA2 from Vipera that responsible for the major toxicity of Cerastes cerastes venom so, it able to antagonize the hazardous toxic effect of the crude venom [21].

V –CONCLUSION

The natural medical herbs are showing a new area for development of better therapeutic and prophylaxis agents against expected envenomation by Cerastes cerastes venom toxicity. The alcoholic extract of Alkanna orientalis has many benefits, as it is cheap, stable at room temperature and able to antagonize the hazardous toxic effect of Cerastes cerastes venom. Therefore, we recommend the usage of Alkanna orientalis extract as initial assist in Cerastes cerastes bitted victims therapy to minimize mortality and morbidity. As well as, this extract can be used as a prophylaxis for researchers who work in the fields where Cerastes cerastes are abundant.
REFERENCES

