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I. INTRODUCTION  

Suppose 𝑭𝑿 is a continuous distribution function (DF) of an RV 𝑿. If we kept the withdrawal observations from 

time to time from 𝑭𝑿, then an observation that is larger than all the drawn observations previously is called  

a record  and its value is called an upper record value or  a record value. Let {𝑹𝒏} be the sequence of the 

observed record values and let 𝒇𝑿 be the probability density function (PDF) of 𝑿. Furthermore, we adopt 𝑹𝟎 =

𝑿. Then, the PDF of 𝑹𝒏 is given by (cf. Ahsanullah, 1995 and Arnold et al., 1998)  

 𝒈𝒏(𝒙) =
[−𝐥𝐨𝐠(𝟏−𝑭𝑿(𝒙))]𝒏

𝒏!
𝒇𝑿(𝒙), −∞ < 𝒙 < ∞, 𝒏 = 𝟏, 𝟐, . . .. 

Note that 𝒈𝟎(𝒙) = 𝒇𝑿(𝒙). Moreover, for any 𝟏 ≤ 𝒏 < 𝒎, the joint PDF of the 𝒎th and 𝒏th upper record 

values is given by (cf. Ahsanullah, 1995 and Arnold et al., 1998)  

𝒈𝒎,𝒏(𝒙𝟏, 𝒙𝟐) =
(−𝐥𝐨𝐠(𝟏 − 𝑭𝑿(𝒙)))𝒏−𝟏

𝚪(𝒏)

(−𝐥𝐨𝐠(
𝟏−𝑭𝑿(𝒙𝟐)

𝟏−𝑭𝑿(𝒙𝟏)
))𝒎−𝒏−𝟏

𝚪(𝒎 − 𝒏)
 

 ×
𝒇𝑿(𝒙𝟏)𝒇𝑿(𝒙𝟐)

𝟏−𝑭𝑿(𝒙𝟏)
, −∞ < 𝒙𝟏 < 𝒙𝟐 < ∞, 
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Given a continuous bivariate distribution with PDF 𝒇𝑿,𝒀(𝒙, 𝒚), let (𝑿𝒊, 𝒀𝒊), 𝒊 = 𝟏, 𝟐, . .. be a random 

sample of the paired RVs (𝑿, 𝒀). The second component connected to the first component’s record value is 

known as the concomitant of that recorded value when the researcher is just interested in looking at the 

sequence of recordings of the first component 𝑿𝒊’s. The concomitants of record values arise widely in practical 

experiments, see Arnold et al. (1998) and Bdair and Raqab (2013). Some properties from concomitants of 

record values were discussed in Ahsanullah (2009) and Ahsanullah and Shakil (2013). Let the sequence of 

record values in the sequence of 𝑿’s is {𝑹𝒏, 𝒏 ≥ 𝟏}, while the corresponding concomitant in the sequence of 

𝒀’s is 𝑹[𝒏]. The joint PDF of 𝑹𝒏 and 𝑹[𝒏] can be expressed as (cf. Houchens, 1984)  

 𝒉[𝒏](𝒙, 𝒚) = 𝒇𝒀|𝑿(𝒚|𝒙)𝒈𝒏(𝒙), (1.1) 

 where 𝒇𝒀|𝑿(𝒚|𝒙) is the conditional PDF of 𝒀 given 𝑿. Consequently, the PDF of the concomitant 𝑹[𝒏] is given 

by  

 𝒉[𝒏](𝒚) = ∫
∞

𝟎
𝒇𝒀|𝑿(𝒚|𝒙)𝒈𝒏(𝒙)𝒅𝒙. 

The FI is a vital criterion in statistical inference especially in large sample studies in estimation theory. In this 

paper, we will define the form of the FI for the DF (see Kharazmi and Asadi, 2018). The FI related to the 

distribution parameters gives us feed back how much information about an unknown parameter from a 

sample and FI is connecting with the efficiency of an estimator and sufficiency of a statistic. When we have an 

unknown parameter in the DF from which the sample is drawn, and when the sample is sufficiently huge, the 

Knowing FI helps tracking down limits on the variance of a given estimator of that parameter and to rough 

the testing appropriation of this estimator. Also, FI based on censored samples is a helpful tool for designing 

the life-testing experiments as well as for assessing the effectiveness of estimators and tests. Abo-Eleneen 

and Nagaraja (2002) explored the properties of FI regarding the dependence parameter in the Farlie-Gumbel-

Morgenstern (FGM) parent. 

Consider a random vector (𝑿, 𝒀) of a PDF 𝒇(𝒙, 𝒚; 𝝀), where 𝝀 ∈ 𝚲 is an unknown parameter in a 

parameter space 𝚲. The FI measure contained in the random vector (𝑿, 𝒀) about the parameter 𝝀 is given by 

(cf. Abo-Eleneen and Nagaraja, 2002)  

 𝑰𝝀(𝑿, 𝒀) =  𝑬 (
𝝏𝐥𝐨𝐠𝒇(𝒙,𝒚;𝝀)

𝝏𝝀
)

𝟐

= − 𝑬 (
𝝏𝟐𝐥𝐨𝐠𝒇(𝒙,𝒚;𝝀)

𝝏𝝀𝟐 ). (1.2) 

 When the parameter 𝝀 is a vector 𝝀 = (𝝀𝟏, . . . , 𝝀𝒎), the FIM 𝑰𝑰(𝑿, 𝒀; 𝝀) is an 𝒎 × 𝒎 matrix, whose (𝒊, 𝒋)th 

element is 𝑰𝝀𝒊,𝝀𝒋
(𝑿, 𝒀) = − 𝑬 (

𝝏𝟐𝐥𝐨𝐠𝒇(𝑿,𝒀;𝝀)

𝝏𝝀𝒊𝝀𝒋
). 

The FGM distribution was originally proposed by Morgenstern (1956) for Cauchy marginals. Gumbel 

(1960) investigated the proposed structure for exponential marginals. Farlie (1960) proposed a novel generic 

form of a bivariate distribution for given arbitrary marginals in connection with his studies of the correlation 

coefficient, which were influenced by the works of Morgenstern (1956) and Gumbel (1960). Later, Johnson 

and Kotz (1975, 1977) extended the introduced bivariate distribution to the multivariate case and begat the 

term  FGM DF. The FGM DF is given by 𝑭𝑿,𝒀(𝒙, 𝒚) = 𝑭𝑿(𝒙)𝑭𝒀(𝒚)[𝟏 + 𝝀(𝟏 − 𝑭𝑿(𝒙))(𝟏 − 𝑭𝒀(𝒚))], −𝟏 ≤ 𝝀 ≤

𝟏, where 𝑭𝑿  and 𝑭𝒀  are the marginal DFs of some RVs 𝑿 and 𝒀. While the classical FGM distribution is a 

flexible family and significant in numerous applications, a notable impediment of the wide use of this family 

is the low dependence level it provides between its RVs, where the maximal positive correlation coefficient is 

0.33. Therefore, the utilization of FGM is restricted to the cases that show low correlation. Huang and Kotz 

(1984) used successive iterations in the FGM distribution to increment the relationship between the parts, 
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furthermore, demonstrated the way that only one single iteration can bring about significantly increasing the 

covariance for certain marginals. Later, this model was extensively studied by Alawady et al. (2020), Barakat 

and Husseiny (2021), and Barakat et al. (2020, 2021). One of the best and notable endeavors to improve the 

scope of relationship and give greater adaptability of the FGM distribution is due to Huang and Kotz (1999). 

Huang and Kotz (1999) proposed two analogous extensions, the first one, on which we focus in this study 

(denoted by HK-FGM(𝝀, 𝒑)), is defined by  

 𝑭𝑿,𝒀(𝒙, 𝒚) = 𝑭𝑿(𝒙)𝑭𝒀(𝒚)[𝟏 + 𝝀(𝟏 − 𝑭𝑿
𝒑

(𝒙))(𝟏 − 𝑭𝒀
𝒑

(𝒚))], 𝒑 ≥ 𝟏, 

 with the PDF  

 𝒇𝑿,𝒀(𝒙, 𝒚) = 𝒇𝑿(𝒙)𝒇𝒀(𝒚)[𝟏 + 𝝀((𝟏 + 𝒑)𝑭𝑿
𝒑

(𝒙) − 𝟏)((𝟏 + 𝒑)𝑭𝒀
𝒑

(𝒚) − 𝟏)], (1.3) 

 The admissible range of the shape-parameter vector (𝝀, 𝒑) is 𝛀 = {(𝝀, 𝒑): −𝒑−𝟐 ≤ 𝝀 ≤ 𝒑−𝟏, 𝒑 ≥ 𝟏} and the 

maximal positive correlation for this model is 0:375. The first aim of this paper is to evaluate the FIM  

 𝑰𝑰(𝑹𝒏, 𝑹[𝒏]) = (

𝑰[𝝀](𝑹𝒏, 𝑹[𝒏]) 𝑰([𝝀,𝒑])(𝑹𝒏, 𝑹[𝒏])

𝑰([𝝀,𝒑])(𝑹𝒏, 𝑹[𝒏]) 𝑰[𝒑](𝑹𝒏, 𝑹[𝒏]) ) (1.4) 

 connected with the concomitants of record values about the shape-parameter vector (𝝀, 𝒑), for HK-FGM. 

Since, our main aim is to study the FI in concomitants of record values about the unknown shape-parameter-

vector (𝝀, 𝒑) our emphasis ought to be on the copula connected with the HK-FGM model. Copula is liberated 

from all obscure boundaries with the exception of the shape parameters, and it can be obtained by letting the 

two RVs 𝑿 and 𝒀 have uniform DFs. 

The second aim of this paper is studying the Shanon entropy of the concomitant of record values 

based on the HK-FGM model. The Shannon entropy is a mathematical measure of information that measures 

the average reduction of uncertainty or variability associated with a RV. The Shannon entropy of a continuous 

RV 𝑿 having PDF 𝒇𝑿(𝒙), is defined by  

 𝑯(𝑿) = − ∫
∞

−∞
𝒇𝑿(𝒙)𝐥𝐨𝐠𝒇𝑿(𝒙) 𝒅𝒙. (1.5) 

 The measure 𝑯(𝑿) is maximal for uniform distributions, additive for independent events, increasing in the 

number of outcomes with non-zero probabilities and continuous. See Abd Elgawad et al. (2020, 2021), 

Alawady et al. (2021), Barakat and Husseiny (2021), and Pathria and Beale (2011) for further information on 

this measure. 

The rest of the paper is organized as follows: In Section 2, a closed form for FIM for concomitants of 

record values according to HK-FGM is derived. In Section 3, the Shanon entropy for concomitants of record 

values based on HKFGM is derived. Finally, In Section 4, some numerical calculations are carried out for the 

considered information measures.  

 

II. FIM IN RECORD VALUES AND THEIR CONCOMITANTS FOR HK-FGM  

Throughout this section, define the sequences 𝑨𝒊 = (−𝟏)𝒊𝝀𝓵
𝒊 ,   𝑨𝒊𝒋 = (−𝟏)𝒋(𝟏 + 𝒑)𝒋 (

𝒊 + 𝟐
𝒋

),   𝑨𝒊𝒌 =

(−𝟏)𝒌(𝟏 + 𝒑)𝒌 (
𝒊 + 𝟐
𝒌

),   𝑩𝒊𝒋 = (−𝟏)𝒋(𝟏 + 𝒑)𝒋 (
𝒊
𝒋
) , 𝑪𝒊𝒋 = (−𝟏)𝒋(𝟏 + 𝒑)𝒋 (

𝒊 + 𝟏
𝒋

) , 𝑫𝒌𝒍 = (−𝟏)𝒍 (
𝒌𝒑
𝒍

) ,
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𝒂𝒏𝒅  𝑸𝒌𝒕 = (−𝟏)𝒕 (
(𝒌 + 𝟏)𝒑
𝒕

), where the ranges of the subscripts of these sequences (such as 𝒊, 𝒋, 𝒌, 𝒍, 𝒓, 𝒔, . ..) 

will be separably defined in Theorems 2.1. The copula density of (1.3) may be written in the form  

 𝒇𝑿,𝒀(𝒙, 𝒚) = [𝟏 + 𝝀𝑪(𝒙, 𝒚; 𝒑)],     𝟎 ≤ 𝒙, 𝒚 ≤ 𝟏, (2.1) 

 where 𝑪(𝒙, 𝒚; 𝒑) = (𝟏 − (𝟏 + 𝒑)𝒙𝒑)(𝟏 − (𝟏 + 𝒑)𝒚𝒑). The FIM, 𝑰𝑰(𝑹𝒏, 𝑹[𝒏]) defined in (1.4), for (2.1) is 

given in the next theorem.  

Theorem 1  Let (𝝀, 𝒑) ∈ 𝜴⋆ ∩ 𝜴, where  

 𝛀⋆ = {(𝝀, 𝒑): |𝝀𝑪(𝒙, 𝒚, 𝒑)| < 𝟏, ∀ 𝟎 ≤ 𝒙, 𝒚 ≤ 𝟏}. (2.2) 

 Then, the elements 𝑰[𝝀](𝑹𝒏, 𝑹[𝒏]), 𝑰([𝝀,𝒑])(𝑹𝒏, 𝑹[𝒏]) and 𝑰[𝒑](𝑹𝒏, 𝑹[𝒏]) of the FIM 𝑰𝑰(𝑹𝒏, 𝑹[𝒏]) are  

 𝑰[𝝀](𝑹𝒏, 𝑹[𝒏]) = ∑∞
𝒊=𝟎 ∑𝒊+𝟐

𝒋=𝟎 ∑𝒊+𝟐
𝒌=𝟎 ∑𝒌𝒑

𝒍=𝟎

𝑨𝒊𝑨𝒊𝒋𝑨𝒊𝒌𝑫𝒌𝒍

(𝒋𝒑+𝟏)(𝒍+𝟏)𝒏, (2.3)  

 𝑰[𝝀,𝒑](𝑹𝒏, 𝑹[𝒏]) = ∑∞
𝒊=𝟎 𝑨𝒊 [∑𝒊+𝟏

𝒋=𝟎 ∑𝒊
𝒌=𝟎 𝑪𝒊𝒋

𝑩𝒊𝒌

𝒋𝒑+𝟏
 

 × (∑(𝒌+𝟏)𝒑
𝒕=𝟎 𝑸𝒌𝒕 + (𝟏 + 𝒑) ∫

𝟏

𝟎
𝒙(𝒌+𝟏)𝒑𝐥𝐨𝐠(𝒙)(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏𝒅𝒙) 

 + ∑𝒊+𝟏
𝒔=𝟎 ∑𝒊

𝒍=𝟎 𝑪𝒊𝒔𝑩𝒊𝒍𝟏
(

𝟏

(𝒍𝟏+𝟏)𝒑+𝟏
+ (𝟏 + 𝒑)

𝒍

(𝒍𝟏+𝟐)𝟐) ∑𝒔𝒑
𝒓=𝟎

𝑫𝒔𝒓

(𝒓+𝟏)𝒏], (2.4) 

 and  

 𝑰[𝒑](𝑹𝒏, 𝑹[𝒏]) = 𝝀𝟐 ∑∞
𝒊=𝟎 𝑨𝒊 [∑𝒊+𝟐

𝒋=𝟎 ∑𝒊
𝒌=𝟎

𝑨𝒊𝒋𝑩𝒊𝒌

𝒋𝒑+𝟏
∫

𝟏

𝟎
𝒙(𝒌+𝟐)𝒑(𝟏 + (𝟏 + 𝒑)𝐥𝐨𝐠(𝒙))𝟐(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏𝒅𝒙 

 +𝟐 ∑𝒊+𝟏
𝒍=𝟎 ∑𝒊+𝟏

𝒍𝟏=𝟎 𝑪𝒊𝒍𝑪𝒊𝒍𝟏
(

𝟏

(𝒍+𝟏)𝒑+𝟏
+

(𝟏+𝒑)𝒍

(𝟐+𝒍)𝟐) ∫
𝟏

𝟎
𝒙(𝒍𝟏+𝟏)𝒑(𝟏 + (𝟏 + 𝒑)𝐥𝐨𝐠(𝒙))𝟐(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏𝒅𝒙 

 + ∑𝒊+𝟐
𝒓=𝟎 ∑𝒊

𝒔=𝟎 ∑𝒓𝒑
𝒔𝟏=𝟎

𝑨𝒊𝒓𝑩𝒊𝒔𝑫𝒓𝒔

(𝒔𝟏+𝟏)𝒏 (
𝟏

𝒔𝒑+𝟏
+ 𝟐(𝟏 + 𝒑)

𝒔

(𝒔+𝟐)𝟐 + (𝟏 + 𝒑)𝟐) ∫
𝟏

𝟎
𝒚𝒔𝒑(𝐥𝐨𝐠(𝒚))𝟐𝒅𝒚]. (2.5)  

Proof. By combining (1.1), (1.2), (1.4), and (2.1) we get  

 
𝝏𝟐𝐥𝐨𝐠𝒉[𝒏](𝒙,𝒚)

𝝏𝝀𝟐 =
𝝏𝟐𝐥𝐨𝐠𝒇𝑿,𝒀(𝒙,𝒚)

𝝏𝝀𝟐 = −
𝑪𝟐(𝒙,𝒚;𝒑)

(𝟏+𝝀𝑪(𝒙,𝒚;𝒑))𝟐. (2.6) 

 The condition (2.2) allows us to expand (𝟏 + 𝝀𝑪(𝒙, 𝒚; 𝒑))−𝟏 by the binomial expansion. Thus, the relations 

(1.2) and (2.6) yield  

 𝑰[𝝀](𝑹𝒏, 𝑹[𝒏]) =
𝟏

𝚪(𝒏)
∫

𝟏

𝟎
∫

𝟏

𝟎

𝑪𝟐(𝒙,𝒚;𝒑)

(𝟏+𝝀𝑪(𝒙,𝒚;𝒑))
(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏𝒅𝒙𝒅𝒚 

 =
𝟏

𝚪(𝒏)
∑∞

𝒊=𝟎 (−𝟏)𝒊𝝀𝒊 ∫
𝟏

𝟎
∫

𝟏

𝟎
𝑪𝒊+𝟐(𝒙, 𝒚; 𝒑)(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏𝒅𝒙𝒅𝒚   

=
𝟏

𝚪(𝒏)
∑

∞

𝒊=𝟎

(−𝟏)𝒊𝝀𝒊 ∫
𝟏

𝟎

∫
𝟏

𝟎

(𝟏 − (𝟏 + 𝒑)𝒙𝒑)𝒊+𝟐(𝟏 − (𝟏 + 𝒑)𝒚𝒑)𝒊+𝟐(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏𝒅𝒙𝒅𝒚. 

Upon using the binomial expansion for (𝟏 − (𝟏 + 𝒑)𝒙𝒑)𝒊+𝟐 and (𝟏 − (𝟏 + 𝒑)𝒚𝒑)𝒊+𝟐, and after some 

simple algebra, we get (2.3). On the other hand, a combination of (1.2) and (2.1) yields  
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𝝏𝟐𝐥𝐨𝐠𝒉[𝒏](𝒙,𝒚)

𝝏𝝀𝝏𝒑
=

𝝏𝑪(𝒙,𝒚;𝒑)

𝝏𝒑

(𝟏+𝝀𝑪(𝒙,𝒚;𝒑))𝟐 . (2.7) 

 Thus, by using (1.2) and (2.7), we get  

 𝑰[𝝀,𝒑](𝑹𝒏, 𝑹[𝒏]) =
𝟏

𝚪(𝒏)
∫

𝟏

𝟎
∫

𝟏

𝟎

𝜻(𝒙,𝒚)

(𝟏+𝝀𝑪(𝒙,𝒚;𝒑))
(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏𝒅𝒙𝒅𝒚, (2.8) 

 where  

−𝜻(𝒙, 𝒚) = 𝒙𝒑(𝟏 − (𝟏 + 𝒑)𝒚𝒑)(𝟏 + (𝟏 + 𝒑)𝐥𝐨𝐠𝒙) + 𝒚𝒑(𝟏 − (𝟏 + 𝒑)𝒙𝒑)(𝟏 + (𝟏 + 𝒑)𝐥𝐨𝐠𝒚). 

Again, the condition (2.2) allows us to expand (𝟏 + 𝝀𝑪(𝒙, 𝒚; 𝒑)))−𝟏 by the binomial expansion. Thus, (2.8) can 

be written as  

 𝑰[𝝀,𝒑](𝑹𝒏, 𝑹[𝒏]) = ∑∞
𝒊=𝟎 𝑨𝒊(𝑰𝟏;𝒊 + 𝑰𝟐;𝒊), (2.9) 

 where  

 𝑰𝟏;𝒊 =
𝟏

𝚪(𝒏)
∫

𝟏

𝟎
∫

𝟏

𝟎
𝒙𝒑(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏(𝟏 − (𝟏 + 𝒑)𝒙𝒑)𝒊(𝟏 − (𝟏 + 𝒑)𝒚𝒑)𝒊+𝟏(𝟏 + (𝟏 +

𝒑)𝐥𝐨𝐠𝒙)𝒅𝒙𝒅𝒚 (2.10) 

 and  

 𝑰𝟐;𝒊 =
𝟏

𝚪(𝒏)
∫

𝟏

𝟎
∫

𝟏

𝟎
𝒚𝒑(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏(𝟏 − (𝟏 + 𝒑)𝒚𝒑)𝒊(𝟏 − (𝟏 + 𝒑)𝒙𝒑)𝒊+𝟏(𝟏 + (𝟏 +

𝒑)𝐥𝐨𝐠𝒚)𝒅𝒙𝒅𝒚. (2.11) 

 By using the binomial expansion for the three middle terms of the integrand in 𝑰𝟏;𝒊, the 3rd, 4th and 

5th terms in 𝑰𝟐;𝒊 and combining (2.9), (2.10) and (2.11) we get (2.4). Finally, on the bases of (1.2), we 

have  

 𝑰[𝒑](𝑹𝒏, 𝑹[𝒏]) =  𝑬 (
𝝏𝐥𝐨𝐠𝒉[𝒏](𝒙,𝒚)

𝝏𝒑
)𝟐. (2.12) 

 Therefore, (1.1) and (2.1) imply  

 𝑰[𝒑](𝑹𝒏, 𝑹[𝒏]) =
𝟏

𝚪(𝒏)
∫

𝟏

𝟎
∫

𝟏

𝟎

𝝀𝟐𝜻𝟐(𝒙,𝒚)

(𝟏+𝝀𝑪(𝒙,𝒚;𝒑))
(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏𝒅𝒙𝒅𝒚, (2.13) 

 where 𝜻(𝒙, 𝒚)  is defined in (2.8). Once more, the condition (2.2) allows us to expand (𝟏 +

𝝀𝑪𝟏(𝒙, 𝒚; 𝒑)))−𝟏  by the binomial expansion. Thus, (2.13) after using the binomial expansion and 

some routine simplifications can be written as  

 𝑰[𝒑](𝑹𝒏, 𝑹[𝒏]) = ∑∞
𝒊=𝟎 𝑨𝒊

(𝟏)
𝝀𝟐[𝑱𝟏;𝒊 + 𝑱𝟐;𝒊 + 𝑱𝟑;𝒊], (2.14) 

 where  

 𝑱𝟏;𝒊 = ∑𝒊+𝟐
𝒋=𝟎 ∑𝒊

𝒌=𝟎

𝑨𝒊𝒋𝑩𝒊𝒌

𝒋𝒑+𝟏
∫

𝟏

𝟎
𝒙(𝒌+𝟐)𝒑(𝟏 + (𝟏 + 𝒑)𝐥𝐨𝐠𝒙)𝟐(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏𝒅𝒙, (2.15) 

  

 𝑱𝟐;𝒊 = 𝟐 ∑𝒊+𝟏
𝒍=𝟎 ∑𝒊+𝟏

𝒍𝟏=𝟎 𝑪𝒊𝒍𝑪𝒊𝒍𝟏
(

𝟏

(𝒍+𝟏)𝒑+𝟏
+ (𝟏 + 𝒑)

𝒍

(𝟐+𝒍)𝟐) 

 × ∫
𝟏

𝟎
𝒙(𝒍𝟏+𝟏)𝒑(𝟏 + (𝟏 + 𝒑)𝐥𝐨𝐠(𝒙))𝟐(−𝐥𝐨𝐠(𝟏 − 𝒙))𝒏−𝟏𝒅𝒙, (2.16) 

 and  

𝑱𝟑;𝒊 = ∑𝒊+𝟐
𝒓=𝟎 ∑𝒊

𝒔=𝟎 ∑𝒓𝒑
𝒔𝟏=𝟎

𝑨𝒊𝒓𝑩𝒊𝒔𝑫𝒓𝒔𝟏

(𝒔𝟏+𝟏)𝒏 (
𝟏

𝒔𝒑+𝟏
+ 𝟐(𝟏 + 𝒑)

𝒔

(𝒔+𝟐)𝟐 + (𝟏 + 𝒑)𝟐) ∫
𝟏

𝟎
𝒚𝒔𝒑(𝐥𝐨𝐠(𝒚))𝟐𝒅𝒚. (2.17) 

 A combination of (2.14) with (2.15)-(2.17) proves the relation (2.5). This completes the proof of the 

theorem.  
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III. Shannon entropy in concomitants of record values based on HK-FGM(𝝀; 𝒑)  

Barakat et al. (2019) derived the PDF of the concomitant 𝑹[𝒏], 𝒏 ≥ 𝟏, under HK-FGM1 as  

 𝒉[𝒏](𝒚) = 𝒇𝒀(𝒚)[𝟏 − 𝜸((𝟏 + 𝒑)𝑭𝒀
𝒑

(𝒚) − 𝟏)], (3.1) 

 where 𝜸 = 𝝀(𝟏 − (𝟏 + 𝒑) ∑ℵ(𝒑)
𝒊=𝟎

(−𝟏)𝒊(𝒊
𝒑

)

(𝒊+𝟏)𝒏 ), ℵ(𝒙) = ∞, if 𝒙 is non-integer, and ℵ(𝒙) = 𝒙, if 𝒙 is integer. The 

next theorem gives the Shanon entropy of concomitants of record value 𝑹𝒏.  

Theorem 2 Let 𝑹[𝒏] be the concomitant of the 𝒏th record value from HK-FGM(𝝀; 𝒑), with PDF (3.1). 

Therefore, an explicit expression of the Shannon entropy of 𝑹[𝒏] is given by  

 𝑯(𝑹[𝒏]): = 𝑯[𝒏] = (𝟏 + 𝜸)𝑯(𝒀) + 𝜸(𝟏 + 𝒑)𝝍(𝒑) − 𝐥𝐨𝐠(𝟏 − 𝒑𝜸) − 𝜸𝒑(𝟏 + 𝒑) 

 × [
𝒂

𝒄(𝟏+𝒑)
+

𝟏

𝒄
(𝒃 −

𝒂𝒃

𝒄
) −

𝒃

𝒄
(𝒃 −

𝒂𝒃

𝒄
) ∫

𝟏

𝟎

𝟏

𝒄𝒛𝒑+𝒃
𝒅𝒛], (3.2) 

 where 𝑯(𝒀) is the Shannon entropy of 𝒀, 𝝍(𝒑) = ∫
∞

−∞
𝒇𝒀(𝒚)𝑭𝒀

𝒑
(𝒚)𝐥𝐨𝐠𝒇𝒀(𝒚)𝒅𝒚, 𝒂 = −𝜸, 𝒃 = 𝟏 + 𝜸, 

and 𝒄 = 𝒂(𝟏 + 𝒑).   

Proof. In view of (1.5) and (3.1), we get  

 𝑯[𝒏] = − ∫
∞

−∞
𝒉[𝒏](𝒚)𝐥𝐨𝐠𝒉[𝒏](𝒚)𝒅𝒚 (3.3) 

  

         = − ∫
∞

−∞
𝒇𝒀(𝒚)[𝟏 − 𝜸((𝟏 + 𝒑)𝑭𝒀

𝒑
(𝒚) − 𝟏)]𝐥𝐨𝐠𝒇𝒀(𝒚)[𝟏 − 𝜸((𝟏 + 𝒑)𝑭𝒀

𝒑
(𝒚) − 𝟏)]𝒅𝒚 

             = − ∫
∞

−∞
𝒇𝒀(𝒚)𝐥𝐨𝐠𝒇𝒀(𝒚)𝒅𝒚 + 𝜸 ∫

∞

−∞
𝒇𝒀(𝒚)(𝟏 + 𝒑)𝑭𝒀

𝒑
(𝒚)𝐥𝐨𝐠𝒇𝒀(𝒚)𝒅𝒚 

 −𝜸 ∫
∞

−∞
𝒇𝒀(𝒚)𝐥𝐨𝐠𝒇𝒀(𝒚)𝒅𝒚 − ∫

∞

−∞
𝒇𝒀(𝒚)[𝟏 − 𝜸((𝟏 + 𝒑)𝑭𝒀

𝒑
(𝒚) − 𝟏)]𝐥𝐨𝐠[𝟏 − 𝜸((𝟏 + 𝒑)𝑭𝒀

𝒑
(𝒚) −

𝟏)]𝒅𝒚, 

     = 𝑯(𝒀) + 𝜸(𝟏 + 𝒑)𝝍(𝒑) + 𝜸𝑯(𝒀) + 𝑰 = (𝟏 + 𝜸)𝑯(𝒀) + 𝜸(𝟏 + 𝒑)𝝍(𝒑) + 𝑰, 

where  

𝑰 = −𝜸 ∫
∞

−∞
𝒇𝒀(𝒚)𝐥𝐨𝐠𝒇𝒀(𝒚)𝒅𝒚 − ∫

∞

−∞
𝒇𝒀(𝒚)[𝟏 − 𝜸((𝟏 + 𝒑)𝑭𝒀

𝒑
(𝒚) − 𝟏)]𝐥𝐨𝐠[𝟏 − 𝜸((𝟏 + 𝒑)𝑭𝒀

𝒑
(𝒚) −

𝟏)]𝒅𝒚. 

Using the substitution 𝒖 = 𝐥𝐨𝐠[𝟏 − 𝜸((𝟏 + 𝒑)𝑭𝒀
𝒑

(𝒚) − 𝟏)], then, 

 𝑰 = −𝐥𝐨𝐠(𝟏 − 𝒑𝜸) − 𝜸(𝟏 + 𝒑)𝒑 ∫
∞

−∞

(𝟏+𝜸)𝑭𝒀
𝒑

(𝒚)−𝜸𝑭𝒀
𝟐𝒑

(𝒚)

𝟏−𝜸((𝟏+𝒑)𝑭𝒀
𝒑

(𝒚)−𝟏)
𝒇𝒀(𝒚)𝒅𝒚. 

Let 𝒛 = 𝑭𝒀(𝒚) after some substitutions we get (3.2).  

3.1  Numerical Study 

 We use MATHEMATICA Ver. 11.3, to evaluate 𝑯[𝒏] by using (3.2), for the copula of HK-FGM. From 

Table 1, the following general property can be extracted: for every fixed 𝒏  we have 𝑯[𝒏]  increases with 

increasing 𝒏. Moreover, Table 2 gives some numerical values for 𝑰𝑰(𝑹𝒏, 𝑹[𝒏]), at 𝝀 = 𝟎. 𝟐𝟓, 𝒑 = 𝟏, 𝟐, 𝟑, 𝟒. 

 

 

 

 Table  1: The Shanon Entropy 𝑯[𝒏] for the Coupla of HK-FGM1 at (𝝀 = 𝟎. 𝟐𝟓, 𝒑 = 𝟏, 𝟐, 𝟑, 𝟒) 

   

 n   𝒑 = 𝟏   𝒑 = 𝟐   𝒑 = 𝟑   𝒑 = 𝟒  
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3  -0.0059  -0.0446  -0.1285  -0.557 

5  -0.0092  -0.0800  -0.2580  -0.5758  

7  -0.0102  -0.0919  -0.3082  -0.7313  

10  -0.0104  -0.0957  -0.3254  -0.7972 

 

 Table  2: 𝑰𝑰(𝑹𝒏, 𝑹[𝒏]), at 𝝀 = 𝟎. 𝟐𝟓  

 n   𝒑 = 𝟏   𝒑 = 𝟐   𝒑 = 𝟑   𝒑 = 𝟒 

1  0.1137,-0.1786,0.0482   0.7332,-0.0.0703,0.0121   0.6461,0.0563,0.0105   0.6890,0.1006,0.0305  

2  0.1521,-0.0600,0.0197   0.4741,-0.0335,0.0066   0.5219,0.0397,0.0066   0.5794,0.0712,0.0193  

3  0.2228,-0.0517,0.0186   0.5031,-0.0317,0.0065   0.5840,0.0397,0.0067   0.6580,0.0765,0.0198 

4  0.2755,-0.0767,0.0219   0.4160,-0.0372,0.0067   0.3977,0.0342,0.0063   0.4221,0.0607,0.0184  

5  0.3079,-0.0546,0.0205   0.5971,-0.0342,0.0072   0.7047,0.0444,0.0074   0.8012,0.0871,0.0219  

6  0.3261,-0.0469,0.0160   0.3841,-0.0287,0.0057   0.4319,0.0348,0.0059   0.4870,0.0655,0.0175  

7  0.3359,-0.0486,0.0147   0.2956,-0.0261,0.0049   0.2949,0.0260,0.0049   0.3121,0.0462,0.0141  

8  0.3410,-0.0556,0.0222   0.6966,-0.0349,0.0077   0.8284,0.0468,0.0078   0.9497,0.0934,0.0232  

9 0.3437,-0.0578,0.021   0.5870,-0.0361,0.0073   0.6905,0.0412,0.008  0.7814,0.0903,0.023  

10 0.3450,-0.0536,0.0182   3.1427,-0.0333,0.0065   0.5212,0.0322,0.0068   0.5807,0.0782,0.0202  

11  0.3457,-0.0437,0.0145   3.1509,-0.0269,0.0052   0.3538,0.0224,0.0055   0.3876,0.0596,0.0164  

12  0.3461,-0.0325,0.0110   3.1550,-0.0197,0.0039   0.2265,0.0224,0.0042   0.2427,0.0404,0.0121  
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