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ABSTRACT : The purpose of the present paper is to introduce the analytical solution for an orthotropic 

micropolar thermoelastic medium using three different theories Dual Phase Lag (DPL), Green & Lindsay 

(G-L) and Green Naghdi type II (G-N II).  The heat equation, equation of motion and micro-rotaton 

couple stress equation gives a system of partial differential equations. Normal mode analysis method is 

used to convert the system of partial differential equations into a system of ordinary differential 

equations to get the analytical solution and expressions for displacements, temperature and stresses. The 

main conclusion in this paper state that displacements, stress and micropoar theory affected by the 

mechanical load which agree with the physical observations that any change in temperature  will lead to 

change in physical quantites and shows that the phenomena of infinite speed doesn't exist. Numerical 

results are graphed, comparisons are carried out in the light of theories (DPL) model, (G-L) theory and 

(G-N II) theory. Micropolar theory has wide applications in industry applications and geophysics. 
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I. INTRODUCTION  

Thermoelasticity is an extension for lame system for elastic bodies which take in consideration also the 

thermal effects, in which the classical theory of elasticity and the theory of heat conduction in solid bodies are 

coupled into one branch. This branch attracted many scientists to build it with their theories. Duhamel [1] was 

the first study the thermal and mechanical effect on solid, the non classical theory of thermoelasticity was 

introduced by by Lord and Shulman [2] with one relaxation time and the second one by Green and Lindsay [3] 

theory which includes two relaxation times and modified all equations of the coupled theory, not only heat 

equation, Green-Naghdi [4] theory introduce three models of their theories as G-N I, II and III models. The first 

model is corresponding to the classical thermoelastic model. This model admits undamped thermoelastic waves 

in thermoelastic material and is best known as the theory of thermoelasticity without energy dissipation. The 

third model includes the previous two models as special cases, and admits dissipation of energy in general. 

In continuum mechanics, the material points which are assumed to be infinitesimal size carry the local 

physical properties of the body, so it is necessary to identify these particles as microparticles. If they are 

deformable, this continuum called micromorphic. If they are rigid the continuum is called micropolar. In the 

classical theory of thermoelasticity which introduced was unable to investigate the deformation properties of 

solids, so Eringen [5-7] introduce a development to it by the theory of micropolar elasticity. Boschi and Iesan 

[8] have given detailed reviews on the generalized theory of micropolar thermoelasticity which permits heat 

transmission as thermal waves of finite speed.  

Some differences between the classical theory and the experiments are found in some problems like those 

which consider stress gradient occur. The stress concentration of holes, cracks, important from the point of view 

of safety problems in engineering structures. The difference between the classical theory and the experiments is 

obviously found in dynamical problems, in which elastic vibrations characterized by high frequencies and small 

wavelengths, are observed when ultrasounds applied. The microparticles has a high impact on the real 

deformation process, which means the effects of microparticles very important because new types of waves 

appear which were not in the classical theory. 

There are solutions in some problems in the classical theory of elasticity in which the stress tensor can't be 

symmetry for example the rectangular wedge with tangent load applied on one of its edge. From physical point 
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of view in micropolar continuum, each particle is considered as infinisimal  rigid body.  The cooserat [9] (or 

micropolar) continuum theory is one of the most prominent continuum theories where rigid particles has six 

degrees of freedom three displacements and three rotations, and in addition to original stresses the couple 

stresses is introduced. Dost and Tabarrok [10] introduced the micropolar generalized thermoelasticity by using 

Green-Lindsay theory. Chandrasekhariah [11] formulated a theory of micropolar theory which contain heat-flux 

in the constitutive variables. 

 

2  Basic equations 
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3  Formulation of the problem 

From eq. (1)  
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From eq. (2) 
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To put these equations in non-dimensional form 
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By substitute with the non-dimensional form in eqs  (5) and (7) and (8)  
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Eq. of heat (3) after dimensionless  
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4 Normal mode analysis 
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By substitute in eqs (8-12) we get the differential equation 
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The non-dimension for tractions and microrotation 
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By substitute from eqs. (13) into eqs. (14) 
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5 Special cases of thermoelastic theory 

The above basic equations are studied for the following theories 

Theory 

 1  0  
Green-Lindsay theory (G-L) 0 > 0 

Green Naghdi type II (G-N II) 0 1 

Chandrasekariah-Tzou theory (DPL) > 0 > 0 

 

6 Numerical results and discussion 

For purpose of numerical the orthotropic micropolar thermoelastic solid, the aluminum has been choose. All 

the variables are in non-dimensional form 

1 1.02d 
, 2 0.7888d 

, 3 1.9828d 
, 4 6.0224d 

, 5 1.32d 
, 6 1.53d 

, 7 0.00104d 
,

8  1.6543d 
 

The numerical outlined obtained above was used of the real part of the temperature T, the displacement 

components   ,   and traction components            . The computations was carried out at        over the 

interval (0, 3).  

Figures (1- 9) shows the predict curves using G-L, G-N II and DPL theories. The solid line represents G-L, 

the dashed is G-N II and the dot line is DPL. 

Figure 1 show the distribution of horizontal displacement u1. It start from positive then decrease to negative 

values and rises again to positive values and finally converges to zero. 
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Figure 2 display the distribution of vertical displacement u2. G-L and G-N II begin with positive values and 

increase up to x2   0.5 then decrease and converges to zero. The DPL theory begin with negative values and 

increase to positive values up to x2   0.5, after that decrease and converges to zero. 

Figure 4 show the distribution of temperature T. It's initial value is zero and increase in a very small interval 

and decease to x2   0.5 then increase and finally converges to zero. 

Figure 3 introduce the distribution of nicrorotation vector    It start by negative values and increase till x2 

  1, then converges to zero. 

Figure 5 display the component of traction t12. The curves start with negative values and rises up to x2   

0.5, decrease and converges after that to zero. 

Figure 6 display the component of traction t21. The curves start with negative values and rises up to x2   

0.5, decrease and converges after that to zero. 

Figure 7 show the component of traction t22. The curves initial values are positive and decrease up to x2   

0.5, increase and converges after that to zero. 

Figure 8 represent the distribution of tangential couple stress     . The graph begin with negative values 

followed by increased till x2 become 0.5 then decrease and finally converges to zero. 

Figure 9 describe the distribution of tangential couple stress     . The graph initial value is zero, increase 

till x2 approach 0.5 from left then decrease and converges to zero 

Conclusion 

The Normal mode analysis technique was used to derive the expressions for stress and temperature 

distributions due to mechanical and thermal loads. The curves of the traction components 21 12,t t
 behave in the 

same manner increase sharply in the converse of the traction component 22t
decrease sharply. The couple stress 

components 13 23,m m
 behaves in the same manner. The curves of theories (G-L) and (DPL) are close to each 

other in most graphs while the curve of (G-N) theory differ from them. For more values of time these 

distributions values become high, the phenomenon of finite speeds propagation clearly appeared in all these 

figures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 show the distribution of horizontal displacement u1 
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Figure 2 display the distribution of vertical displacement u2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 introduce the distribution of microrotation vector    
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Figure 4 show the distribution of temperature T 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 display the component of traction t12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 display the component of traction t21 
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Figure 7 show the component of traction t22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 represent the distribution of tangential couple stress     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 describe the distribution of tangential couple stress     
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