
Bulletin  of Faculty of Science ,Zagazig University (BFSZU) 2023 

        Bulletin of Faculty of Science, Zagazig University (BFSZU))) 
e-ISSN: 1110-1555   

  Volume-2023, Issue-3, pp-27-43 

  https://bfszu.journals.ekb.eg/journal 
Research Paper                                                                 DOI: 10.21608/bfszu.2022.109098.1103 

================================================================ 

 
h t t p s : / / b f s z u . j o u r n a l s . e k b . e g / j o u r n a l  Page 27 

 

A novel stochastic technique using the dual phase-lag thermoelasticity 

model 

Kh.Lotfy, Abdelaala. Ahmed, A. El-Bary and Ramdan. S. Tantawi 

Mathematics Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt. 
Corresponding author: abdoahmed199590@gmail.com 

 

ABSTRACT : In this paper, a novel technique of stochastic thermoelastic interactions by using the theory of 

dual phase-lag is studied. A one-dimensional (1-D) problem was discussed. Silicon material was regarded as 

an example of our half space ( 0x  ) problem.  As the nature is changeable, the boundary conditions were 

chosen to be also random by combining a random function to it. So, a noise was added to the problem to make 

it more actual. White noise was assumed to be the additional noise because it is the most prevalent type. The 

random function was regarded as the Wiener process function. Laplace transform was the method used to 

solve the problem in (1-D) numerically. The deterministic solutions were got numerically by Laplace method. 

The Wiener process was considered to get the stochastic solutions simultaneously. The variance of the 

distributions was considered and discussed graphically. A comparison between the deterministic and 

stochastic solutions were done graphically. 
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I. INTRODUCTION  

The standard thermoelasticity hypothesis, which was based on the original Fourier's law and was developed by 

Biot [1], predicts that heat can travel at any speed. From a physical standpoint, this phenomenon looks 

implausible. The weakness is highlighted since the theory includes a parabolic-type heat conduction equation. 

The results of experimental studies that demonstrate the presence of finite thermal wave speed cannot be 

explained by this hypothesis (see [2–6]). This inspired a lot of academics to focus on finding a solution to this 

problem. Numerous novel models based on a hyperbolic-type heat conduction equation were developed as a 

result of this research, which also included the limited heat transmission. It has been authenticated in numerous 

publications [7–15]. The Cattaneo-Vernotte heat conduction model [17–19] was modified by Lord and Shulman 

[16] to incorporate one relaxation time parameter and describe the restricted speed of the thermal signal. After 

this, Green and Lindsay [20] created a coupled theory of thermoelasticity using the explicit constitutive 

equations. In order to create new coupled thermoelastic theories, Green and Naghdi [21–23] added   as a new 

constitutive variable, such that;   represents the the movement of heat. Tzou [24, 25] later created the dual 

phase lag hypothesis. It was suggested by him that the macroscopic formulation take into account the 

microstructural implications of heat transport phenomena. He used two phase-lags to connect the heat flux 

vector 
q

 to the temperature gradient   in order to demonstrate the effects of microstructural changes on the 

heat transport process as: 

   , ,qq r t K r t       
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Such that; q  in addition q  represent the phase lag parameters of the medium. Then, in a manner 

similar to dual phase-lag thermoelasticity theory, Roychoudhuri [26] provided an addition to the Green-Naghdi 

theory of the third type by incorporating an additional phase lag,  , in the gradient of the thermal displacement. 

Recently, Quintanilla [27], changed how he approached the three-phase-lag models and examined the distant 

places and stability of the recently presented model by using q     . Stochastic processes are 

mathematical tools that assist us in coping with the system's randomness. In essence, it is a set of random 

variables. Due to the fact that more options are taken into account when calculating than in the deterministic 

case, it makes the mathematical issue more real. It makes it easier to employ various samples so that the process 

can continue even in the absence of initial conditions. Other paths, nevertheless, might be more likely than some 

others [28–30]. There are several factors that call for switching from a strict deterministic model to a stochastic 

one, but two stand out [31]. First, there is a lack of complete system isolation. Second, because not all of the 

variables that make up the actual physical system may be included. Different thermal issues with randomized 

accessibility and issues in different mediums were studied by Ahmadi [32], Chen and Tien [33], Kellar et al. 

[34], and Tzou [35]. Considering the boundary conditions, Chiba, Ahmadi [36] and Sugano [37], and Gaikovich 

[38] have investigated the issues in greater detail. Consideration was given to the issues concerning stochastic 

internal heat generation by Val'kovskaya and Lenyuk [39]. In modified thermoelasticity and advanced 

thermoelastic diffusion, Sherief et al [40, 41], studied the stochastic thermal shock difficulties. The impacts of 

stochastic thermomechanical loads were then investigated by Kant and Mukhopadhyay [42, 43] concerning the 

theory of thermos-elasticity with no energy loss and the theory of thermos-elasticity with two relaxation 

coefficients. 

II. Basic equations 

Tzou [24], introduced the theory of dual phase-lag for heat conduction, so considering this theory we will 

research the coupling effects of thermoelastic interactions. With the help of Tzou [24, 25] and 

Chandrasekharaiah [8], the fundamental guiding equations with no body forces, neither heat sources are: 

heat conduction with dual phase-lags theory: 

2 2

2
1 1

2

q

q iq K
t t t x



 
 

     
                                                   (1) 

Equation of energy: 

, 0i j

s
q T

t



 
                                                                        (2) 

Equation of entropy: 

0 0e kkT S c T e    
                                                             (3) 

Equation of motion: 

,ij i iu 
                                                                          (4) 

The relation between Stress–strain–temperature: 

2ij kk ij ij ihe e      
                                                      (5) 

The relation between Strain–displacement: 
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 , ,

1

2
ij i j j ie u u 

                                                                (6) 

Such that;  , is the increasing temperature, 0 ,T
 is the indication temperature, iq

is the vector of the heat flux, 

ije
is the components of strain, 

,ij
is the stress component, iu

is the components of the displacement, entropy 

is S , the specific heat is ec
, the density is 


, the Lame´s constants are 

 , 
 

, ,   qK and  
, are 

thermos-elasticity parameters, such that 
 3 2 T    

, where; 
,T  denote the expansion coefficients, 

thermal conductivity is K , the phase-lag of the heat flux additionally, the temperature gradient's phase lag 

respectively. 

1. Formulation of the problem 

Let an elastic isotropic homogeneous media. For a half-space one-dimensional (1-D), problem. The variables 

must be constrained by boundaries at infinity of x . the main variables are; vector displacement 

  , ,0,0u u x t
, and temperature distribution. We obtain the governing equations as: 

22 2 2

02 2
1 1

2

q

q e

u
K c T

t x t t t t x


 
   

        
                                                           (7) 

The motion equation can be rewritten as: 

 
2 2

2 2
2

u u

t x x


   
  

 
                                                                                               (8) 

The constitutive relation  

 2xx

u

x
   


  

                                                                                                    (9) 

To simplify the problem, we put the dimensionless form to the variables as: 

 12

1 1

0 0

2
,  ' ,  ' ,  ' ,

C
x C x x t C t u

T T

 
  




    

 

2
2 2 0

1 1 2 2

1 0

' ,  ' ,  =  and ' xx
q q xx

e

T
C C

c C T
 

 
     

 
  

; 

Such that; the speed of thermal wave is 1C
, and is defined as 

 
1

2
C

 






, 


 is the thermoelasticity 

coupling constant, and equals 

ec

K



. 

Then we can transform the basic equations (7)-(9), by the help of the above dimensionless variables; 
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22 2 2

2 2
1 1

2

q

q q

u

t x t t t t x

 
  

        
                                                                        (10) 

2 2

2 2

u u

t x x

  
 

                                                                                               (11) 

xx

u

x
 


 
                                                                                                 (12) 

For more simplification for the problem; we neglected the dash. 

III. The problem solution using Laplace method  

By using Laplace technique to equations (10)-(12), we get; 

     2

1 1D s Du s   
                                                                             (13) 

     2 2D s u s D s 
                                                                                     (14) 

   
     xx s Du s s  

                                                                                      (15) 

Such that; 

1,   .
d a

D
dx b

 
                                                                               (16) 

                                where;  

2 21
1 ,  1

2
q q qa s s s b s  

 
     

        

The boundary conditions in Laplace form are; 

     0, , ,         , 0.xxx s x s x s   
                                                                    (17) 

To get the solution of the equations (13)-(15), we use the elimination method, we get the auxiliary equation as; 

4 2

1 2 0D D  
                                                                                     (18) 

 2

1 1

2

2 1

1s

s

 



    


                                                                                       (19) 

In the case of linearity problem; 

     
2

1

, expi i

i

x s M s k x


 
                                                                      (20) 
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In a similar way, the other fields solution is; 

         
2 2

1

1 1

, exp expi i i i i

i i

u x s M s k x H M s k x
 

    
                     (21) 

And 

  

         
2 2

2

1 1

, exp expxx i i i i i

i i

x s M s k x H M s k x
 

    
                     (22) 

Where; 
,  M  and M  i i iM  

are unknown functions of s only, and 

2

1

1 1

1

1

2 1

i

ii

i

i

H

H

k

k

H k







 








 .                                                       (23) 

IV. Temperature distribution (deterministic and stochastic) 
V.       Deterministic Temperature 

Equation (20) may be expanded as: 

     1 1 2 2, exp exp .x s M k x M k x    
                                    (24) 

Defining the boundary condition of temperature distribution is 

 0( ) .        when 0t h t t   
                                                                       (25) 

Such that 
 h t

 is the unit step function, 


 is a constant.  

Taking Laplace transfer for the two sides of the aforementioned equation, yield; 

 
0 ( ) .t

s







                                                                                (26) 

5.1.      Stochastic Temperature 

Considering the boundary in equation (25), defined as:  

0 0( ) ( ) ( )t t t   
                                              (27) 

Where 0 ( )t
 is stochastic process depending upon t, satisfying  

  
 0 ( ) 0E t 

                                                      (28) 

A random function 
 Y t

, as [40,44] fulfil the next property; 
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[ { ( )}] [ { ( )}]E L Y t L E Y t
                                         (29) 

Since each physical quantity contains a boundary condition, then adding the random function converts it to a 

stochastic one. Then we have from equation (24), that; 

 ( , ) ( , ) ( , )E T x s L E T x t T x s                                    (30) 

It’s observed that the temperature’s mean equals its deterministic case. 

So, equation (24) can be transformed into; 

     0, ,x s x s s  
                                                  (31) 

Where 
 ,x s

, is defined as;  

   2 1

21 1 22
exp exp

21 22 21 22

h E h
k x k x

h h h h

 
   


 

  


                  (32) 

Now, using the boundary condition, defined in equation (27), we get; 

    0, , ( ) ( )x s x s s s   
                                               (33) 

Applying the convolution property to get the inverse of Laplace transform, we get; 

       1

0
, , ,

t
x t x t r x t r du     

                                   (34) 

Where 
 r

 is the white noise function, deterministic temperature is 
 1 ,x t

 and 
 ,x t r 

 is the 

inverse laplace of eq (32). 

Hence, equation (34), may be rearranged as: 

       1

0

, , ,
t

x t x t x t r dW r    
                              (35) 

Such that, 
 dW r

 defines the Wiener process. 

Now, the variance can be got by squaring equation (34), we get; 

             

     

22 1

1 2 1 2
0 0

1

0

, , , ,

                      2 , ,

t t

t

x t x t r r x t r x t r

x t r x t r

 



        

  

 


                  (36) 

Introducing  the expectation operator to two sides of the equation above, we have; 
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            

     

22 1

1 2 1 2
0 0

1

0

, , , ,

                     +2 , ,

t t

t

E x t E x t E r r x t r x t r

x t E r x t r

 



               

    

 


        (37) 

Where, 
  0E r     and 

     1 2 1 2 .E r r r r                                             (38) 

Hence 

          
22 1

1 2 1 2 1 2
0 0

, , , ,
t t

E x t E x t x t r x t r r r drdr               
     (39) 

Using the following property; 

     0 0 ,

b

a

f x f x x dx f x 
     0 .a x b 

                                    (40) 

Hence,  

     1 2 1

0

( , ) , ,

t

Var x t x t r x t r dr     
                                    (41) 

Putting 1 2r r
, we get; 

   
2

1 1

0

( , ) , .

t

Var x t x t r dr     
                                  (42) 

Replacing 1t r
 by  , we get; 

     
2 2

0

( , ) , , .

o t

t

Var x t x d x d               
                    (43) 

 

 

VI.    Stress distribution 
VII. Deterministic stress 

Equation (22) can be expanded as; 

     21 1 1 22 2 2, exp exp .x s H M k x H M k x    
                                    (44) 

6.1.      Stochastic stress 

Recalling the boundary condition of stochastic process which at equation (27), and performing the same method 

as the above section, we get; 
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 ( , ) ( , ) ( , ).E x s L E x t x s                                             (45) 

Again, it’s observed that, temperature’s mean equals its deterministic case. Equation (44), is rearranged as; 

     0, , ,x s x s x s 
                                           (46) 

Where 

     2 1

22 21 21 22
exp exp

21 22 21 2
,

2

H H H H
k x k x

H H H H
x s

 
   


 

  


                (47) 

After using the condition of equation (27) we get; 

    0, , ( ) ( )x s x s s s   
                                            (48) 

After cancellation and using the convolution property of Laplace transform of the above equation we get, 

 

       1

0

, , ,
t

x t x t x t r dW r    
                          (49) 

Where the deterministic stress is 
 1 ,x t

 and the inverse Laplace of eq (48) is 
 ,x t r 

. Using the same 

technique used above, the stress distribution variance can be got as: 

  2

0

( , ) ( , )

t

Var x t x d   
                                      (50) 

VIII. Displacement distribution 
IX.               Deterministic displacement 

Equation (21) is expanded as; 

     11 1 1 12 2 2, exp exp .u x s H M k x H M k x   
                                    (51) 

X. Stochastic displacement 

Recalling the boundary condition of stochastic process which at equation (27), and performing the same method 

as the above section, we get; 

   ( , ) ( , ) ( , ).E u x s L E u x t u x s                                        (45) 

Again, it’s observed that, the temperature’s mean equals its deterministic case. Equation (44), can be rearranged 

as; 

     0, , ,u x s U x s x s
                                           (46) 

Such that 

     2 1

12 21 11 22
exp exp

21 22 21 22
,

H
U x

H H H
k x k x

H H H H
s

 
  




 


                (47) 
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After using the condition of equation (27) we get; 

    0, , ( ) ( )u x s U x s s s  
                                            (48) 

After cancellation and using the convolution property of Laplace transform of the above equation we get, 

 

       1

0

, , ,
t

u x t u x t U x t r dW r  
                          (49) 

Where 
 1 ,u x t

define the deterministic stress. 
 ,U x t r

 define the inverse Laplace of eq (48). Using the 

same technique used above, the variance can be got as: 

  2

0

( , ) ( , )

t

Var u x t x d  
                                      (50) 

XI. Numerical results 

Taking Silicon material as a semiconductor example of our problem, with the following constants [44-46]. 

Unit Symbol Si 
2/ mN

 
  


 

10104.6   
10105.6   

3/ mkg
 


 2330

 

K  0T
 

800 

sec ( )s
 


 

510x5 

 

sm /2

 eD
 

3105.2   

3m  nd
 

3110x9 
 

eV  gE
 

11.1  

1K  t  
610x14.4 

 
11  KWm  k

 
150

 
)/( KkgJ

 eC
 

695
 

sm /
 

s  2  

 

Tacking the values of the dimensionaless incomes as; 
0.01, 

 
0.015,q 

  .04t  , 
0.1,ct 

and 

1   . By simulating computation numerically, the solutions were got graphically. The stochastic integration 

that follows Higham [47] is calculated using either the Brownian motion theory or a typical Wiener process. To 

distinguish both deterministic and stochastic distributions, a set of three sample paths were taken while 

computing all physical variables for stochastic distributions. Figure 1 (1a to 1c), display the deterministic 

temperature, stress and displacement, respectively, versus the distance for various values of times, namely; 

0.04,  0.06 and 0.08t t t  
 in the case of thermoelasticity theory. Whereas, the figure 2 (2a to 2c), 

display the stochastic temperature, stress and displacement, respectively, versus the distance for specific value 

of time namely, 0.04t   in the case of thermoelasticity theory. Also figure 3 (3a to 3c), show a comparison 
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between the deterministic and stochastic distributions of temperature, stress, and displacement against the 

distance when 
0.04t 

 in the context of thermoelasticity theory. Finally, figures 4 (4a to 4c), show the 

variance distribution of temperature, stress, and displacement against the distance at different values of time, 

namely; 
0.04,  0.06 and 0.08t t t  

 in the context of thermoelasticity theory. Figure 1 shows the 

difference in deterministic solutions in different values of times. We observe that they behave the same as a 

wave, but differ in the magnitude with a small amount. We note that the stochastic distributions in figure 2, 

begin very strong, then decrease till coincides with x-axis matching the conditions at infinity. Figure 3, it’s 

notable that, the deterministic temperature distribution differs from the stochastic temperature distribution with 

small magnitudes over several sample paths before they eventually correspond fully. Figure 4, displays the 

variance distributions, which achieve the boundary and the initial conditions of the waves; we note that, the 

temperature and displacement distributions begins from the peak, then drop sharply to the minimum values till 

coincide with the zero line. The variance of stress distributions begins from zero then rise up to the maximum 

then drops again to the minimum till coincide at infinity. a stochastic solution has been developed by including 

the white noise in the boundary conditions. 

 

 

 

 

 

 

 

Fig(1-

a) 
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Fig(1-

b) 

 
Fig(1-

c) 

 

Figure 1: The deterministic of (temperature, stress and displacement distributions) versus the x-axis for various 

values of times at
0.04,  0.06 and 0.08t t t  

. 

Fig(2-

a) 

 



Bulletin  of Faculty of Science ,Zagazig University (BFSZU) 2023 
 

 
h t t p s : / / b f s z u . j o u r n a l s . e k b . e g / j o u r n a l  Page 38 

Fig(2-

b) 

 

Fig(2-

c) 

 

 

Fig2: The stochastic temperature, stress and displacement with x-axis at 0.04t   

Fig(3-

a) 
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Fig(3-

b) 

 

Fig(3-

c) 

 

Figure (3(a-c)): The comparison between stochastic and deterministic distributions versus x-axis for various 

values of times at
0.04,  0.06 and 0.08t t t  

. 

 

Fig(4-

a) 
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Fig(4-

b) 

 

Fig(4-

c) 

 

Figure 4: The variance of (temperature, stress and displacement) versus the distance for various values of times, 

namely; 
0.04,  0.06 and 0.08t t t  

. 

 

XII.    Conclusion 

The one-dimensional half-space problem of dual phase lag in an isotropic elastic homogeneous material has 

been solved and explained. The problem was undergone a numerical analysis. Utilizing three sample paths and 

their means, a comparison between deterministic distributions and their equivalent stochastic distribution has 

been made. All variables disappear after a certain distance in both the case of a deterministic distribution and a 

stochastic distribution, demonstrating the existence of a finite zone of effects. The variance was found to be 

proportional to the squared of the intensity of the noise. The agreement between the mean of the stochastic 

solution and its corresponding deterministic solution for all physical fields has been validated by numerical 

reasoning. This synchronicity demonstrates the accuracy of the findings. 
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